Treffer: Minimizing loss probability bounds for portfolio selection
Department of Administration Engineering, Keio University, 3-14-1 Hiyoshi, Kahoku, Yokohama, Kanagawa 223-8522, Japan
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
In this paper, we derive a portfolio optimization model by minimizing upper and lower bounds of loss probability. These bounds are obtained under a nonparametric assumption of underlying return distribution by modifying the so-called generalization error bounds for the support vector machine, which has been developed in the field of statistical learning. Based on the bounds, two fractional programs are derived for constructing portfolios, where the numerator of the ratio in the objective includes the value-at-risk (VaR) or conditional value-at-risk (CVaR) while the denominator is any norm of portfolio vector. Depending on the parameter values in the model, the derived formulations can result in a nonconvex constrained optimization, and an algorithm for dealing with such a case is proposed. Some computational experiments are conducted on real stock market data, demonstrating that the CVaR-based fractional programming model outperforms the empirical probability minimization.