Treffer: Identification of maximum loadability limit and weak buses using security constraint genetic algorithm

Title:
Identification of maximum loadability limit and weak buses using security constraint genetic algorithm
Authors:
Source:
Electrical power & energy systems. 36(1):40-50
Publisher Information:
Oxford: Elsevier, 2012.
Publication Year:
2012
Physical Description:
print, 26 ref
Original Material:
INIST-CNRS
Subject Terms:
Electrical engineering, Electrotechnique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electrotechnique. Electroenergetique, Electrical engineering. Electrical power engineering, Electroénergétique, Electrical power engineering, Réseaux et lignes électriques, Power networks and lines, Perturbation. Régulation. Protection, Disturbances. Regulation. Protection, Exploitation. Commande de charge. Fiabilité, Operation. Load control. Reliability, Divers, Miscellaneous, Algorithme génétique, Genetic algorithm, Algoritmo genético, Charge dynamique, Dynamic load, Carga dinámica, Codage binaire, Binary coding, Codificación binaria, Découplage, Decoupling, Desacoplamiento, Désadaptation, Mismatching, Desadaptación, Ecoulement charge, Load flow, Flujo carga, Flux puissance, Power flow, Flujo potencia, Implémentation, Implementation, Implementación, Marge stabilité, Stability margin, Margen estabilidad, Matrice Jacobi, Jacobi matrix, Matriz Jacobi, Mise à jour, Updating, Actualización, Méthode Newton Raphson, Newton Raphson method, Método Newton Raphson, Méthode optimisation, Optimization method, Método optimización, Optimisation PSO, Particle swarm optimization, Optimización PSO, Puissance réactive, Reactive power, Potencia reactiva, Réseau électrique, Electrical network, Red eléctrica, Singularité, Singularity, Singularidad, Stabilité statique, Steady state stability, Estabilidad estática, Stabilité tension, Voltage stability, Estabilidad tensión, Sécurité, Safety, Seguridad, Sûreté réseau électrique, Power system security, Phenomène de cross-over, Cross-over phenomenon, Decoupling property, Maximum loadability limit, Security constraints
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Electrical Engineering, National Institute of Technology, Durgapur, India
ISSN:
0142-0615
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electrical engineering. Electroenergetics
Accession Number:
edscal.25643812
Database:
PASCAL Archive

Weitere Informationen

Maximum loadability limit (MLL) is a realistic index to evaluate the steady state voltage stability because it provides system operator a better practical sense of security margin in the aspects of engineering parameter like system loading. If MLL is identified, load margin, voltage stability, security margin can be determined and precaution can be taken. Conventional power flow methods like Newton-Raphson, Gauss-Siedel, fast decoupled power flow methods suffer to provide proper MLL under security constraints as Jacobian matrix becomes singular when system loading approaches its loadability limit. Hence evolutionary techniques such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA) are now-a-days applied to solve the non-linear complex MLL problem. Phase angles, active power, voltage magnitudes of load buses, reactive power of PV buses are considered as security constraints for MLL problem. New simple real coded Security Constraint GA (SCGA) is developed to solve the problem. MLL problem is formulated as maximization problem. As handling of real coded power flow variables are easier than binary coding, real coding of SCGA parameters is applied. Novel formulas are developed to update power flow parameters considering corresponding power mismatches. Utilizing decoupling properties of power system, mutation is implemented. To provide diversity, new parent selection in crossover section is adopted. Weak buses are also identified for the application of FACTS devices. The developed method is compared with general PSO (GPSO) technique for test systems of IEEE 14, 30, 57 and 118 bus. Showing characteristics and results, the effectiveness and efficiency of the proposed method is established.