Result: Programmable Hash Functions and Their Applications

Title:
Programmable Hash Functions and Their Applications
Source:
Journal of cryptology. 25(3):484-527
Publisher Information:
New York, NY: Springer, 2012.
Publication Year:
2012
Physical Description:
print, 67 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Institut fur Kryptographie und Sicherheit, Karlsruhe Institute of Technology, Karlsruhe, Germany
Fakultät fur Mathematik, Ruhr-Universität Bochum, Bochum, Germany
ISSN:
0933-2790
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.25785684
Database:
PASCAL Archive

Further Information

We introduce a new combinatorial primitive called programmable hash functions (PHFs). PHFs can be used to program the output of a hash function such that it contains solved or unsolved discrete logarithm instances with a certain probability. This is a technique originally used for security proofs in the random oracle model. We give a variety of standard model realizations of PHFs (with different parameters). The programmability makes PHFs a suitable tool to obtain black-box proofs of cryptographic protocols when considering adaptive attacks. We propose generic digital signature schemes from the strong RSA problem and from some hardness assumption on bilinear maps that can be instantiated with any PHF. Our schemes offer various improvements over known constructions. In particular, for a reasonable choice of parameters, we obtain short standard model digital signatures over bilinear maps.