Result: Inverse Problems, Trace Formulae for Discrete Schrodinger Operators
Title:
Inverse Problems, Trace Formulae for Discrete Schrodinger Operators
Authors:
Source:
Annales Henri Poincaré. 13(4):751-788
Publisher Information:
Heidelberg: Springer, 2012.
Publication Year:
2012
Physical Description:
print, 41 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Physics, Physique, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Equations aux dérivées partielles, Partial differential equations, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Lois de probabilités, Distribution theory, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Analyse numérique dans des espaces abstraits, Numerical analysis in abstract spaces, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Divers, Other topics in mathematical methods in physics, Décalage, Shift, Decalaje, Energie, Energy, Fonction spectrale, Spectral functions, Matrice S, S matrix, Moment statistique, Statistical moment, Momento estadístico, Opérateur Schrödinger, Schrödinger operator, Operador Schrodinger, Physique mathématique, Mathematical physics, Potentiel, Potentials, Problème inverse, Inverse problems, Spectre discret, Discrete spectrum, Espectro discreto, Support, Supports, Trace, Traza, 35J10, 62E17, 65J22, Fonction propre généralisée, Opérateur potentiel, Représentation spectrale
Document Type:
Academic journal
Article
File Description:
text
Language:
English
Author Affiliations:
Institute of Mathematics University of Tsukuba, Tsukuba 305-8571, Japan
Mathematical Physics Department, Faculty of Physics Petersburg State University St. Ulianovskaya 2, St, Petersburg 198904, Russian Federation
Mathematical Physics Department, Faculty of Physics Petersburg State University St. Ulianovskaya 2, St, Petersburg 198904, Russian Federation
ISSN:
1424-0637
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Theoretical physics
Theoretical physics
Accession Number:
edscal.25816536
Database:
PASCAL Archive
Further Information
We study discrete Schrödinger operators with compactly supported potentials on Zd. Constructing spectral representations and representing S-matrices by the generalized eigenfunctions, we show that the potential is uniquely reconstructed from the S-matrix of all energies. We also study the spectral shift function ξ(λ) for the trace class potentials, and estimate the discrete spectrum in terms of the moments of ξ(λ) and the potential.