Treffer: Asymptotic Behavior of Massless Dirac Waves in Schwarzschild Geometry

Title:
Asymptotic Behavior of Massless Dirac Waves in Schwarzschild Geometry
Source:
Annales Henri Poincaré. 13(4):943-989
Publisher Information:
Heidelberg: Springer, 2012.
Publication Year:
2012
Physical Description:
print, 26 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Physics, Physique, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Equations différentielles, Ordinary differential equations, Equations aux dérivées partielles, Partial differential equations, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Inférence à partir de processus stochastiques; analyse des séries temporelles, Inference from stochastic processes; time series analysis, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Divers, Other topics in mathematical methods in physics, Analyse spectrale, Spectral analysis, Comportement asymptotique, Asymptotic behavior, Comportamiento asintótico, Décroissance solution, Solution decay, Decrecimiento solución, Equation Dirac, Dirac equation, Equation Schrödinger, Schroedinger equation, Equation onde, Wave equations, Equation vitesse, Rate equation, Ecuación velocidad, Equation énergie, Energy equation, Ecuación energía, Etat lié, Bound state, Fonction Green, Green function, Géométrie, Geometry, Physique mathématique, Mathematical physics, Quantité mouvement, Momentum, Résonance, Resonance, Zéro, Zero, Cero, 34B27, 35B34, 35J05, 35Q55, 62M15, Energie bornée, Bounded energy, Ensemble solution, Solution asymptotique, Asymptotic solution, Solution explicite, Solution équation, Séparation variable
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics University of Michigan 530 Church St, Ann Arbor, MI 48109, United States
ISSN:
1424-0637
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.25816543
Database:
PASCAL Archive

Weitere Informationen

In this paper, we show that massless Dirac waves in the Schwarzschild geometry decay to zero at a rate t―2λ, where λ = 1, 2, ... is the angular momentum. Our technique is to use Chandrasekhar's separation of variables whereby the Dirac equations split into two sets of wave equations. For the first set, we show that the wave decays as t―2λ. For the second set, in general, the solutions tend to some explicit profile at the rate t―2λ. The decay rate of solutions of Dirac equations is achieved by showing that the coefficient of the explicit profile is exactly zero. The key ingredients in the proof of the decay rate of solutions for the first set of wave equations are an energy estimate used to show the absence of bound states and zero energy resonance and the analysis of the spectral representation of the solutions. The proof of asymptotic behavior for the solutions of the second set of wave equations relies on careful analysis of the Green's functions for time independent Schrödinger equations associated with these wave equations.