Treffer: Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
We present a bottom-up aggregation approach to image segmentation. Beginning with an image, we execute a sequence of steps in which pixels are gradually merged to produce larger and larger regions. In each step, we consider pairs of adjacent regions and provide a probability measure to assess whether or not they should be included in the same segment. Our probabilistic formulation takes into account intensity and texture distributions in a local area around each region. It further incorporates priors based on the geometry of the regions. Finally, posteriors based on intensity and texture cues are combined using a mixture of experts formulation. This probabilistic approach is integrated into a graph coarsening scheme, providing a complete hierarchical segmentation of the image. The algorithm complexity is linear in the number of the image pixels and it requires almost no user-tuned parameters. In addition, we provide a novel evaluation scheme for image segmentation algorithms, attempting to avoid human semantic considerations that are out of scope for segmentation algorithms. Using this novel evaluation scheme, we test our method and provide a comparison to several existing segmentation algorithms.