Treffer: Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration

Title:
Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration
Source:
IEEE transactions on pattern analysis and machine intelligence. 34(2):315-327
Publisher Information:
Los Alamitos, CA: IEEE Computer Society, 2012.
Publication Year:
2012
Physical Description:
print, 39 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Complexité algorithme, Algorithm complexity, Complejidad algoritmo, Complexité linéaire, Linear complexity, Complejidad lineal, Coopération, Cooperation, Cooperación, Intégration information, Information integration, Integración información, Mesure probabilité, Probability measure, Medida probabilidad, Modélisation, Modeling, Modelización, Méthode ascendante, Bottom up method, Método ascendente, Stimulus, Estímulo, Système expert, Expert system, Sistema experto, Sémantique, Semantics, Semántica, Séquence image, Image sequence, Secuencia imagen, Texture, Textura, Traitement image, Image processing, Procesamiento imagen, Vision ordinateur, Computer vision, Visión ordenador, Segmentation image, Image segmentation, Segmentación de imágenes, cue integration, image segmentation, segmentation evaluation
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Faculty of Mathematics and Computer Science, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
ISSN:
0162-8828
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.25862389
Database:
PASCAL Archive

Weitere Informationen

We present a bottom-up aggregation approach to image segmentation. Beginning with an image, we execute a sequence of steps in which pixels are gradually merged to produce larger and larger regions. In each step, we consider pairs of adjacent regions and provide a probability measure to assess whether or not they should be included in the same segment. Our probabilistic formulation takes into account intensity and texture distributions in a local area around each region. It further incorporates priors based on the geometry of the regions. Finally, posteriors based on intensity and texture cues are combined using a mixture of experts formulation. This probabilistic approach is integrated into a graph coarsening scheme, providing a complete hierarchical segmentation of the image. The algorithm complexity is linear in the number of the image pixels and it requires almost no user-tuned parameters. In addition, we provide a novel evaluation scheme for image segmentation algorithms, attempting to avoid human semantic considerations that are out of scope for segmentation algorithms. Using this novel evaluation scheme, we test our method and provide a comparison to several existing segmentation algorithms.