Treffer: Remarks on the Liouville type results for the compressible Navier―Stokes equations in ℝ

Title:
Remarks on the Liouville type results for the compressible Navier―Stokes equations in ℝ
Authors:
Source:
Nonlinearity (Bristol. Print). 25(5):1345-1349
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 6 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Korea, Republic of
ISSN:
0951-7715
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.25877422
Database:
PASCAL Archive

Weitere Informationen

In this paper, we prove Liouville type result for the stationary solutions to the compressible Navier―Stokes equations (NS) and the compressible Navier― Stokes―Poisson (NSP) equations and in ℝN, N ≥ 2. Assuming suitable integrability and the uniform boundedness conditions for the solutions we are led to the conclusion that v = 0. In the case of (NS) we deduce that the similar integrability conditions imply v = 0 and ρ = constant on ℝN. This shows that if we impose the the non-vacuum boundary condition at spatial infinity for (NS), v → 0 and ρ → ρ∞ > 0, then v = 0, ρ = ρ∞ are the solutions.