Treffer: Global well-posedness for a slightly supercritical surface quasi-geostrophic equation
Title:
Global well-posedness for a slightly supercritical surface quasi-geostrophic equation
Authors:
Source:
Nonlinearity (Bristol. Print). 25(5):1525-1535
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 17 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Equations aux dérivées partielles, Partial differential equations, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Divers, Other topics in mathematical methods in physics, Analyse Fourier, Fourier analysis, Análisis Fourier, Analyse non linéaire, Nonlinear analysis, análisis no lineal, Distribution vitesse, Velocity distribution, Distribución velocidad, Estimation moyenne, Mean estimation, Estimación promedio, Existence solution, Existence of solution, Existencia de solución, Fonction régulière, Smooth function, Función regular, Multiplicateur, Multiplier, Multiplicador, Physique mathématique, Mathematical physics, Física matemática, Principe maximum, Maximum principle, Principio máximo, Problème bien posé, Well posed problem, Problema bien planteado, Solution globale, Global solution, Solución global, Surface, Superficie, 35B50, Equation quasi géostrophique, Quasi geostrophic equation, Existence globale, Fonction croissante, Increasing function, Fonction lisse
Document Type:
Fachzeitschrift
Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, University of Wisconsin Madison, 480 Lincoln Dr, Madison, WI 53706, United States
Department of Mathematics, The University of Chicago, 5734 University Ave, Chicago, IL 60637, United States
Department of Mathematics, The University of Chicago, 5734 University Ave, Chicago, IL 60637, United States
ISSN:
0951-7715
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Theoretical physics
Theoretical physics
Accession Number:
edscal.25877432
Database:
PASCAL Archive
Weitere Informationen
We use a non-local maximum principle to prove the global existence of smooth solutions for a slightly supercritical surface quasi-geostrophic equation. By this we mean that the velocity field u is obtained from the active scalar θ by a Fourier multiplier with symbol i ζ⊥|ζ|―1m(|ζ|), where m is a smooth increasing function that grows slower than log log |ζ| as |ζ| → ∞.