Treffer: Modified Ridge Parameters for Seemingly Unrelated Regression Model
Departments of Economics and Statistics, Center for Labor Market and Discrimination Studies, Linnaeus University, Sweden
Department of Mathematics and Statistics, Florida International University, Miami, FL, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
In this article, we modify a number of new biased estimators of seemingly unrelated regression (SUR) parameters which are developed by Alkhamisi and Shukur (2008), AS, when the explanatory variables are affected by multicollinearity. Nine estimators of the ridge parameters have been modified and compared in terms of the trace mean squared error (TMSE) and (PR) criterion. The results from this extended study are the also compared with those founded by AS. A simulation study has been conducted to compare the performance of the modified estimators of the ridge parameters. The results showed that under certain conditions the performance of the multivariate ridge regression estimators based on SUR ridge RMSmax is superior to other estimators in terms of TMSE and PR criterion. In large samples and when the collinearity between the explanatory variables is not high, the unbiased SUR, estimator produces a smaller TMSEs.