Treffer: OPTIMALITY CONDITIONS AND DUALITY IN NONSMOOTH SEMIINFINITE PROGRAMMING

Title:
OPTIMALITY CONDITIONS AND DUALITY IN NONSMOOTH SEMIINFINITE PROGRAMMING
Source:
Numerical functional analysis and optimization. 33(4-6):452-472
Publisher Information:
Philadelphia, PA: Taylor & Francis, 2012.
Publication Year:
2012
Physical Description:
print, 56 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics and Computer Science, Northern Michigan University, Marquette, Michigan, United States
ISSN:
0163-0563
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.25948591
Database:
PASCAL Archive

Weitere Informationen

In this article, we utilize the semiinfinite versions of Guignard's constraint qualification and Motzkin's theorem of the alternative to establish a set of Karush―Kuhn―Tucker―type necessary optimality conditions for a nonsmooth and nonconvex semiinfinite programming problem. Furthermore, we discuss some sufficient optimality conditions and duality relations for our semiinfinite programming problem.