Result: Tunneling for a Class of Difference Operators

Title:
Tunneling for a Class of Difference Operators
Source:
Annales Henri Poincaré. 13(5):1231-1269
Publisher Information:
Heidelberg: Springer, 2012.
Publication Year:
2012
Physical Description:
print, 15 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Universität Potsdam, Institut für Mathematik, Am Neuen Palais 10, 14469 Potsdam, Germany
ISSN:
1424-0637
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.26007576
Database:
PASCAL Archive

Further Information

We analyze a general class of difference operators Hε = Tε + Vε on ℓ2 ((εℤ)d) where Vε is a multi-well potential and ε is a small parameter. We decouple the wells by introducing certain Dirichlet operators on regions containing only one potential well, and we shall treat the eigenvalue problem for Hε as a small perturbation of these comparison problems. We describe tunneling by a certain interaction matrix, similar to the analysis for the Schrödinger operator [see Helffer and Sjöstrand in Commun Partial Differ Equ 9:337-408, 1984], and estimate the remainder, which is exponentially small and roughly quadratic compared with the interaction matrix.