Treffer: Monte-Carlo Sensitivity Analysis for Controlled Direct Effects Using Marginal Structural Models in the Presence of Confounded Mediators
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
In randomized trials, investigators are frequently interested in estimating the direct effect of a treatment on an outcome that is not relayed by intermediate variables, in addition to the usual intention-to-treat (ITT) effect. Even if the ITT effect is not confounded due to randomization, the direct effect is not identified when unmeasured variables affect the intermediate and outcome variables. Although the unmeasured variables cannot be adjusted for in the models, it is still important to evaluate the potential bias of these variables quantitatively. This article proposes a sensitivity analysis method for controlled direct effects using a marginal structural model that is an extension of the sensitivity analysis method of unmeasured confounding introduced in the context of observational studies. The proposed method is illustrated using a randomized trial of depression.