Treffer: Stochastic game logic

Title:
Stochastic game logic
Source:
Acta informatica. 49(4):203-224
Publisher Information:
Heidelberg: Springer, 2012.
Publication Year:
2012
Physical Description:
print, 30 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Faculty for Computer Science, Institute for Theoretical Computer Science, Technische Universitat Dresden, 01062 Dresden, Germany
Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
ISSN:
0001-5903
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.26074690
Database:
PASCAL Archive

Weitere Informationen

Stochastic game logic (SGL) is a new temporal logic for multi-agent systems modeled by turn-based multi-player games with discrete transition probabilities. It combines features of alternating-time temporal logic (ATL), probabilistic computation tree logic and extended temporal logic. SGL contains an ATL-like modality to specify the individual cooperation and reaction facilities of agents in the multi-player game to enforce a certain winning objective. While the standard ATL modality states the existence of a strategy for a certain coalition of agents without restricting the range of strategies for the semantics of inner SGL formulae, we deal with a more general modality. It also requires the existence of a strategy for some coalition, but imposes some kind of strategy binding to inner SGL formulae. This paper presents the syntax and semantics of SGL and discusses its model checking problem for different types of strategies. The model checking problem of SGL turns out to be undecidable when dealing with the full class of history-dependent strategies. We show that the SGL model checking problem for memoryless deterministic strategies as well as the model checking problem of the qualitative fragment of SGL for memoryless randomized strategies is PSPACE-complete, and we establish a close link between natural syntactic fragments of SGL and the polynomial hierarchy. Further, we give a reduction from the SGL model checking problem under memoryless randomized strategies into the Tarski algebra which proves the problem to be in EXPSPACE.