Treffer: Novel Spatio-Temporal Structural Information Based Video Quality Metric

Title:
Novel Spatio-Temporal Structural Information Based Video Quality Metric
Source:
IEEE transactions on circuits and systems for video technology. 22(7):989-998
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2012.
Publication Year:
2012
Physical Description:
print, 38 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Dispositifs à images, Imaging devices, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie du signal et des communications, Signal and communications theory, Signal, bruit, Signal, noise, Détection, estimation, filtrage, égalisation, prédiction, Detection, estimation, filtering, equalization, prediction, Traitement du signal, Signal processing, Traitement des images, Image processing, Télécommunications, Telecommunications, Radiodiffusion. Vidéocommunications. Audiovisuel, Broadcasting. Videocommunications. Audiovisual, Télévision, Television, Algorithme, Algorithm, Algoritmo, Base de données, Database, Base dato, Complexité calcul, Computational complexity, Complejidad computación, Contrôle qualité, Quality control, Control de calidad, Espace temps, Space time, Espacio tiempo, Estimation mouvement, Motion estimation, Estimación movimiento, Etat actuel, State of the art, Estado actual, Evaluation image, Image evaluation, Evaluación imagen, Flux optique, Optical flow, Flujo óptico, Localisation, Localization, Localización, Marché concurrentiel, Open market, Libre mercado, Modélisation, Modeling, Modelización, Métrique, Metric, Métrico, Pondération, Weighting, Ponderación, Qualité image, Image quality, Calidad imagen, Traitement signal vidéo, Video signal processing, Traitement signal, Signal processing, Procesamiento señal, Télévision, Television, Televisión, Valeur propre, Eigenvalue, Valor propio, Vecteur propre, Eigenvector, Vector propio, -3-D structure tensor, human visual system (HVS), video quality assessment (VQA)
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Graduate University of the Chinese Academy of Sciences, Beijing 100080, China
National Engineering Laboratory for Video Technology and Key Laboratory of Machine Perception (MoE), School of Electrical Engineering and Computer Science, Peking University, Beijing 100871, China
ISSN:
1051-8215
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electronics

Telecommunications and information theory
Accession Number:
edscal.26136493
Database:
PASCAL Archive

Weitere Informationen

Video quality assessment (VQA) is very important for many video processing applications, e.g., compression, archiving, restoration, and enhancement. An ideal video quality metric should achieve consistency between video distortion prediction and psychological perception of human visual system Different from the quality assessment of single images, motion information and temporal distortion should be carefully considered for VQA. Most of previous VQA algorithms deal with the motion information through two ways: either incorporating motion characteristics into a temporal weighting scheme to account for their affects on the spatial distortion, or modeling the temporal distortion and spatial distortion independently. Optical flows need to be estimated in the two ways. In this paper, we propose a different methodology to deal with the motion information. Instead of explicitly calculating the optical flow and independently modeling the temporal distortion, both the spatial edge features and temporal motion characteristics are accounted for by some structural features in the localized space-time regions. We propose to represent the structural information by two descriptors extracted from the 3-D structure tensors, which are the largest eigenvalue as well as its corresponding eigenvector. Experimental results on LIVE database and VQEG FR-TV Phase-I database show that the proposed VQA metric is competitive with state-of-the-art VQA metrics, while keeping relatively low computing complexity.