Treffer: Nonparametric Modeling Auxiliary Covariates in Random Coefficient Models
Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
Random coefficient model (RCM) is a powerful statistical tool in analyzing correlated data collected from studies with different clusters or from longitudinal studies. In practice, there is a need for statistical methods that allow biomedical researchers to adjust for the measured and unmeasured corariates that might affect the regression model. This article studies two nonparametric methods dealing with auxiliary covariate data in linear random coefficient models. We demonstrate how to estimate the coefficients of the models and how to predict the random effects when the covariatea are missing or mismeasured. We employ empirical estimator and kernel smoother to handle a discrete and continuous auxiliary, respectively. Simulation results show that the proposed methods perform better than an alternative method that only uses data in the validation data set and ignores the random effects in the random coefficient model.