Treffer: Nonparametric Modeling Auxiliary Covariates in Random Coefficient Models

Title:
Nonparametric Modeling Auxiliary Covariates in Random Coefficient Models
Source:
Communications in statistics. Simulation and computation. 41(8-10):1271-1281
Publisher Information:
Colchester: Taylor & Francis, 2012.
Publication Year:
2012
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Inférence non paramétrique, Nonparametric inference, Applications, Assurances, économie, finance, Insurance, economics, finance, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Probabilités et statistiques numériques, Numerical methods in probability and statistics, Analyse corrélation, Correlation analysis, Análisis correlación, Covariable, Covariate, Donnée manquante, Missing data, Dato que falta, Donnée statistique, Statistical data, Dato estadístico, Econométrie, Econometrics, Econometría, Effet aléatoire, Random effect, Efecto aleatorio, Ensemble aléatoire, Random set, Conjunto aleatorio, Erreur mesure, Measurement error, Error medida, Estimateur noyau, Kernel estimator, Estimation non paramétrique, Non parametric estimation, Estimación no paramétrica, Estimation statistique, Statistical estimation, Estimación estadística, Etude méthode, Method study, Estudio método, Modèle linéaire, Linear model, Modelo lineal, Modèle régression, Regression model, Modelo regresión, Méthode non paramétrique, Non parametric method, Método no paramétrico, Méthode noyau, Kernel method, Método núcleo, Méthode statistique, Statistical method, Método estadístico, Noyau(mathématiques), Kernels, Sciences économiques, Economic sciences, Ciencias económicas, Simulation numérique, Numerical simulation, Simulación numérica, 62G05, 62P20, Coefficient aléatoire, Random coefficient, Estimation noyau, Kernel estimation, Auxiliary covariate, Empirical estimator, Kernel smoother, Primary 62G07, Random coefficient models, Secondary 62G10
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics and Statistics, San Diego State University, San Diego, California, United States
Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, United States
ISSN:
0361-0918
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.26163989
Database:
PASCAL Archive

Weitere Informationen

Random coefficient model (RCM) is a powerful statistical tool in analyzing correlated data collected from studies with different clusters or from longitudinal studies. In practice, there is a need for statistical methods that allow biomedical researchers to adjust for the measured and unmeasured corariates that might affect the regression model. This article studies two nonparametric methods dealing with auxiliary covariate data in linear random coefficient models. We demonstrate how to estimate the coefficients of the models and how to predict the random effects when the covariatea are missing or mismeasured. We employ empirical estimator and kernel smoother to handle a discrete and continuous auxiliary, respectively. Simulation results show that the proposed methods perform better than an alternative method that only uses data in the validation data set and ignores the random effects in the random coefficient model.