Treffer: Robust Regression Using Data Partitioning and M-Estimation
Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, United States
Economics and Statistics Institute, Korea University Sejong Campus, Chungnam, Korea, Republic of
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
We propose a new robust regression estimator using data partition technique and M estimation (DPM). The data partition technique is designed to define a small fixed number of subsets of the partitioned data set and to produce corresponding ordinary least square (OLS) fits in each subset, contrary to the resampling technique of existing robust estimators such as the least trimmed squares estimator. The proposed estimator shares a common strategy with the median ball algorithm estimator that is obtained from the OLS trial fits only on a fixed number of subsets of the data. We examine performance of the DPM estimator in the eleven challenging data sets and simulation studies. We also compare the DPM with the five commonly used robust estimators using empirical convergence rates relative to the OLS for clean data, robustness through mean squared error and bias, masking and swamping probabilities, the ability of detecting the known outliers, and the regression and affine eguivariances.