Treffer: Robust Regression Using Data Partitioning and M-Estimation

Title:
Robust Regression Using Data Partitioning and M-Estimation
Source:
Communications in statistics. Simulation and computation. 41(8-10):1282-1300
Publisher Information:
Colchester: Taylor & Francis, 2012.
Publication Year:
2012
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Lois de probabilités, Distribution theory, Inférence linéaire, régression, Linear inference, regression, Plans d'expériences, Experimental design, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Probabilités et statistiques numériques, Numerical methods in probability and statistics, Accélération convergence, Convergence acceleration, Aceleración convergencia, Algorithme, Algorithm, Algoritmo, Analyse discriminante, Discriminant analysis, Análisis discriminante, Analyse multivariable, Multivariate analysis, Análisis multivariable, Analyse numérique, Numerical analysis, Análisis numérico, Bootstrap, Distribution statistique, Statistical distribution, Distribución estadística, Erreur moyenne, Mean error, Error medio, Erreur systématique, Bias, Error sistemático, Estimation M, M estimation, Estimación M, Estimation biaisée, Biased estimation, Estimación sesgada, Estimation non paramétrique, Non parametric estimation, Estimación no paramétrica, Estimation statistique, Statistical estimation, Estimación estadística, Loi probabilité, Probability distribution, Ley probabilidad, Médiane, Median, Mediana, Méthode jackknife, Jackknife method, Método jackknife, Méthode moindre carré, Least squares method, Método cuadrado menor, Méthode rééchantillonnage, Resampling method, Méthode statistique, Statistical method, Método estadístico, Observation aberrante, Outlier, Observación aberrante, Partition, Partición, Plan expérience, Experimental design, Plan experiencia, Point rupture, Breakdown point, Punto ruptura, Probabilité, Probability, Probabilidad, Robustesse estimateur, Estimator robustness, Robustez estimador, Régression statistique, Statistical regression, Regresión estadística, Simulation numérique, Numerical simulation, Simulación numérica, Simulation statistique, Statistical simulation, Simulación estadística, Taux convergence, Convergence rate, Relación convergencia, Théorie approximation, Approximation theory, 05Bxx, 62E17, 62F40, 62G09, 62H30, 62Jxx, 62K99, 65B99, Classification automatique(statistiques), Estimation paramétrique, Data partition, Leverage points, Primary 62F35, Secondary 62J05
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Statistics, Korea University, Seoul, Korea, Republic of
Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, United States
Economics and Statistics Institute, Korea University Sejong Campus, Chungnam, Korea, Republic of
ISSN:
0361-0918
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.26163990
Database:
PASCAL Archive

Weitere Informationen

We propose a new robust regression estimator using data partition technique and M estimation (DPM). The data partition technique is designed to define a small fixed number of subsets of the partitioned data set and to produce corresponding ordinary least square (OLS) fits in each subset, contrary to the resampling technique of existing robust estimators such as the least trimmed squares estimator. The proposed estimator shares a common strategy with the median ball algorithm estimator that is obtained from the OLS trial fits only on a fixed number of subsets of the data. We examine performance of the DPM estimator in the eleven challenging data sets and simulation studies. We also compare the DPM with the five commonly used robust estimators using empirical convergence rates relative to the OLS for clean data, robustness through mean squared error and bias, masking and swamping probabilities, the ability of detecting the known outliers, and the regression and affine eguivariances.