Result: The Beta Exponential-Geometric Distribution

Title:
The Beta Exponential-Geometric Distribution
Authors:
Source:
Communications in statistics. Simulation and computation. 41(8-10):1606-1622
Publisher Information:
Colchester: Taylor & Francis, 2012.
Publication Year:
2012
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Théorie des probabilités et processus stochastiques, Probability theory and stochastic processes, Lois de probabilités, Distribution theory, Statistiques, Statistics, Inférence non paramétrique, Nonparametric inference, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Probabilités et statistiques numériques, Numerical methods in probability and statistics, Contrainte mécanique, Mechanical stress, Tensión mecánica, Distribution statistique, Statistical distribution, Distribución estadística, Entropie, Entropy, Entropía, Estimation non paramétrique, Non parametric estimation, Estimación no paramétrica, Estimation statistique, Statistical estimation, Estimación estadística, Fonction généralisée, Generalized function, Función generalizada, Fonction génératrice, Generating function, Función generatriz, Fonction répartition, Distribution function, Función distribución, Fonction vraisemblance, Likelihood function, Función verosimilitud, Information Fisher, Fisher information, Información Fisher, Loi bêta, Beta distribution, Ley beta, Loi exponentielle, Exponential distribution, Ley exponencial, Loi géométrique, Geometric distribution, Ley geométrica, Maximum vraisemblance, Maximum likelihood, Maxima verosimilitud, Mesure information, Information measure, Medida información, Méthode matricielle, Matrix method, Método matriz, Méthode statistique, Statistical method, Método estadístico, Simulation numérique, Numerical simulation, Simulación numérica, Statistique ordre, Order statistic, Estadística orden, Taux défaillance, Failure rate, Porcentaje falla, Théorie approximation, Approximation theory, Théorie information, Information theory, Teoría información, Théorie statistique, Statistical theory, Teoría estadística, Variable aléatoire, Random variable, Variable aléatoria, 40C05, 60E05, 62B10, 62E17, 62G30, Fonction répartition empirique, Matrice information, Information matrix, 62E10, Beta exponential distribution, Exponential-geometric distribution, Generalized exponential-geometric distribution, Maximum likelihood estimation, Stress-strength parameter
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Statistics, University of Isfahan, Isfahan, Iran, Islamic Republic of
ISSN:
0361-0918
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.26164011
Database:
PASCAL Archive

Further Information

A new four-parameter distribution with decreasing, increasing, and upside-down bathtub failure rate called the beta exponential-geometric distribution is proposed. The new distribution, generated from the logit of a beta random variable, extends the exponential-geometric distribution of Adamidis and Loukas (1998) and some other distributions. A comprehensive mathematical treatment of this distribution is provided. Some expressions for the moment generating function, moments, order statistics, and Rényi entropy of the new distribution are derived. Estimation of the stress-strength parameter is also obtained. The model parameters are estimated by the maximum likelihood method and Fisher information matrix is discussed. Finally, an application to a real data set is illustrated.