Treffer: Multi-Step Classification Trees
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
Many algorithms originated from decision trees have been developed for classification problems. Although they are regarded as good algorithms, most of them suffer from loss of prediction accuracy, namely high misclassification rates when there are many irrelevant variables. We propose multi-step classification trees with adaptive variable selection (the multi-step GUIDE classification tree (MG) and the multi-step CRUISE classification tree (MC) to handle this problem. The variable selection step and the fitting step comprise the multi-step method. We compare the performance of classification trees in the presence of irrelevant variables. MG and MC perform better than Random Forest and C4.5 with an extremely noisy dataset. Furthermore, the prediction accuracy of our proposed algorithm is relatively stable even when the number of irrelevant variables increases, while that of other algorithms worsens.