Result: Gene Pathways Discovery in Asbestos-Related Diseases using Local Causal Discovery Algorithm

Title:
Gene Pathways Discovery in Asbestos-Related Diseases using Local Causal Discovery Algorithm
Source:
Communications in statistics. Simulation and computation. 41(8-10):1840-1859
Publisher Information:
Colchester: Taylor & Francis, 2012.
Publication Year:
2012
Physical Description:
print, 1 p.1/4
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Théorie des probabilités et processus stochastiques, Probability theory and stochastic processes, Processus de markov, Markov processes, Statistiques, Statistics, Lois de probabilités, Distribution theory, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Probabilités et statistiques numériques, Numerical methods in probability and statistics, Mammalia, Rodentia, Vertebrata, Algorithme recherche, Search algorithm, Algoritmo búsqueda, Analyse numérique, Numerical analysis, Análisis numérico, Chaîne Markov, Markov chain, Cadena Markov, Distribution statistique, Statistical distribution, Distribución estadística, Estimation Bayes, Bayes estimation, Estimación Bayes, Méthode Monte Carlo, Monte Carlo method, Método Monte Carlo, Méthode statistique, Statistical method, Método estadístico, Méthode stochastique, Stochastic method, Método estocástico, Simulation numérique, Numerical simulation, Simulación numérica, Souris, Mouse, Ratón, Système interaction, Interaction system, Sistema interacción, Théorie approximation, Approximation theory, 60J10, 62E17, 65C05, 65C40, Méthode implicite, Système perturbé, 62P10, Bayesian networks, Causal discovery, Gene pathway discovery, Markov chain Monte Carlo search
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Biostatistics, Florida International University, Miami, Florida, United States
Axiom IT Solutions, Inc., Missoula, Montana, United States
School of Pharmacy, University of Montana, Missoula, Montana, United States
ISSN:
0361-0918
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.26164027
Database:
PASCAL Archive

Further Information

To learn about the progression of a complex disease, it is necessary to understand the physiology and function of many genes operating together in distinct interactions as a system. In order to significantly advance our understanding of the function of a system, we need to learn the causal relationships among its modeled genes. To this end, it is desirable to compare experiments of the system under complete interventions of some genes, e.g., knock-out of some genes, with experiments of the system without interventions. However, it is expensive and difficult (if not impossible) to conduct wet lab experiments of complete interventions of genes in animal models, e.g., a mouse model. Thus, it will be helpful if we can discover promising causal relationships among genes with observational data alone in order to identify promising genes to perturb in the system that can later be verified in wet laboratories. While causal Bayesian networks have been actively used in discovering gene pathways, most of the algorithms that discover pairwise causal relationships from observational data alone identify only a small number of significant pairwise causal relationships, even with a large dataset. In this article, we introduce new causal discovery algorithms—the Equivalence Local Implicit latent variable scoring Method (EquLIM) and EquLIM with Markov chain Monte Carlo search algorithm (EquLIM-MCMC)—that identify promising causal relationships even with a small observational dataset.