Treffer: Semi-active vibration control of an eleven degrees of freedom suspension system using neuro inverse model of magnetorheological dampers
Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran, Islamic Republic of
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Computer science; theoretical automation; systems
Mechanical engineering. Mechanical construction. Handling
Physics: solid mechanics
Weitere Informationen
A semi-active controller-based neural network for a suspension system with magnetorheological (MR) dampers is presented and evaluated. An inverse neural network model (NIMR) is constructed to replicate the inverse dynamics of the MR damper. The typical control strategies are linear quadratic regulator (LQR) and linear quadratic gaussian (LQG) controllers with a clipped optimal control algorithm, while inherent time-delay and non-linear properties of MR damper lie in these strategies. LQR part of LQG controller is also designed to produce the optimal control force. The LQG controller and the NIMR models are linked to control the system. The effectiveness of the NIMR is illustrated and verified using simulated responses of a full-car model. The results demonstrate that by using the NIMR model, the MR damper force can be commanded to follow closely the desirable optimal control force. The results also show that the control system is effective and achieves better performance and less control effort than the optimal in improving the service life of the suspension system and the ride comfort of a car.