Result: Weak solutions to a thin film model with capillary effects and insoluble surfactant

Title:
Weak solutions to a thin film model with capillary effects and insoluble surfactant
Source:
Nonlinearity (Bristol. Print). 25(9):2423-2441
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 18 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Leibniz Universitat Hannover, Institut für Angewandte Mathematik, Welfengarten 1, 30167 Hannover, Germany
CEREMADE, UMR CNRS 7534, Université de Paris-Dauphine, Place du Maréchal De Lattre De Tassigny, 75775 Paris, France
Institut de Mathématiques de Toulouse, CNRS UMR 5219, Université de Toulouse, 31062 Toulouse, France
ISSN:
0951-7715
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.26341246
Database:
PASCAL Archive

Further Information

The paper focuses on a model describing the spreading of an insoluble surfactant on a thin viscous film with capillary effects taken into account. The governing equation for the film height is a degenerate parabolic of fourth order and coupled to a second order parabolic equation for the surfactant concentration. It is shown that nonnegative weak solutions exist.