Treffer: Random billiards with wall temperature and associated Markov chains

Title:
Random billiards with wall temperature and associated Markov chains
Source:
Nonlinearity (Bristol. Print). 25(9):2503-2541
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 15 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Probabilités et statistiques, Probability and statistics, Théorie des probabilités et processus stochastiques, Probability theory and stochastic processes, Processus de markov, Markov processes, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Probabilités et statistiques numériques, Numerical methods in probability and statistics, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Divers, Other topics in mathematical methods in physics, Algorithme, Algorithm, Algoritmo, Analyse non linéaire, Nonlinear analysis, análisis no lineal, Chaîne Markov, Markov chain, Cadena Markov, Collision particule, Particle collision, Colisión partícula, Distribution Maxwell Boltzmann, Maxwell Boltzmann distribution, Distribución Maxwell Boltzmann, Distribution statistique, Statistical distribution, Distribución estadística, Espace Hilbert, Hilbert space, Espacio Hilbert, Espace normé, Normed space, Espacio normado, Espace état, State space, Espacio estado, Estimation moyenne, Mean estimation, Estimación promedio, Etat équilibre, Equilibrium state, Estado equilibrio, Interaction particule, Particle interaction, Interacción partícula, Loi probabilité, Probability distribution, Ley probabilidad, Mesure invariante, Invariant measure, Medida invariante, Mécanique statistique, Statistical mechanics, Mecánica estadística, Méthode espace état, State space method, Método espacio estado, Opérateur autoadjoint, Self adjoint operator, Operador autoadjunto, Opérateur compact, Compact operator, Operador compacto, Physique mathématique, Mathematical physics, Física matemática, Principe invariance, Invariance principle, Principio invarianza, Probabilité stationnaire, Steady state probability, Probabilidad estacionaria, Probabilité transition, Transition probability, Probabilidad transición, Valeur propre, Eigenvalue, Valor propio, Modèle billard, Opérateur Markov
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics and Statistics, Swarthmore College, Swarthmore, PA 19081, United States
Department of Mathematics, Washington University, Campus Box 1146, St Louis, MO 63130, United States
ISSN:
0951-7715
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.26341249
Database:
PASCAL Archive

Weitere Informationen

By a random billiard we mean a billiard system in which the standard rule of specular reflection is replaced with a Markov transition probabilities operator P that gives, at each collision of the billiard particle with the boundary of the billiard domain, the probability distribution of the post-collision velocity for a given pre-collision velocity. A random billiard with microstructure, or RBM for short, is a random billiard for which P is derived from a choice of geometric/mechanical structure on the boundary of the billiard domain, as explained in the text. Such systems provide simple and explicit mechanical models of particle-surface interaction that can incorporate thermal effects and permit a detailed study of thermostatic action from the perspective of the standard theory of Markov chains on general state spaces. The main focus of this paper is on the operator P itself and how it relates to the mechanical and geometric features of the microstructure, such as mass ratios, curvatures, and potentials. The main results are as follows: (1) we give a characterization of the stationary probabilities (equilibrium states) of P and show how standard equilibrium distributions studied in classical statistical mechanics such as the Maxwell―Boltzmann distribution and the Knudsen cosine law arise naturally as generalized invariant billiard measures; (2) we obtain some of the more basic functional theoretic properties of P, in particular that P is under very general conditions a self-adjoint operator of norm 1 on a Hilbert space to be defined below, and show in a simple but somewhat typical example that P is a compact (Hilbert-Schmidt) operator. This leads to the issue of relating the spectrum of eigenvalues of P to the geometric/mechanical features of the billiard microstructure; (3) we explore the latter issue, both analytically and numerically in a few representative examples. Additionally, (4) a general algorithm for simulating the Markov chains is given based on a geometric description of the invariant volumes of classical statistical mechanics. Our description of these volumes may have independent interest.