Treffer: Linear stability analysis for travelling waves of second order in time PDE's

Title:
Linear stability analysis for travelling waves of second order in time PDE's
Source:
Nonlinearity (Bristol. Print). 25(9):2625-2654
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 35 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Algèbre, Algebra, Théorie des nombres, Number theory, Analyse mathématique, Mathematical analysis, Equations aux dérivées partielles, Partial differential equations, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Divers, Other topics in mathematical methods in physics, Analyse non linéaire, Nonlinear analysis, análisis no lineal, Communication, Comunicación, Equation Klein Gordon, Klein Gordon equation, Ecuación Klein Gordon, Equation dérivée partielle, Partial differential equation, Ecuación derivada parcial, Equation implicite, Implicit equation, Ecuación implicita, Equation ordre 4, Fourth order equation, Ecuación orden 4, Fonction Evans, Evans function, Función Evans, Forme quadratique, Quadratic form, Forma cuadrática, Indice, Index, Modèle Boussinesq, Boussinesq model, Modelo Boussinesq, Modèle linéaire, Linear model, Modelo lineal, Onde progressive, Travelling wave, Onda progresiva, Opérateur autoadjoint, Self adjoint operator, Operador autoadjunto, Ordre 2, Second order, Orden 2, Physique mathématique, Mathematical physics, Física matemática, Puissance, Power, Potencia, Stabilité asymptotique, Asymptotic stability, Estabilidad asintótica, Stabilité linéaire, Linear stability, Estabilidad lineal, Stabilité numérique, Numerical stability, Estabilidad numérica, Valeur propre, Eigenvalue, Valor propio, Vitesse déplacement, Speed, Velocidad desplazamiento, Zéro, Zero, Cero, 11Exx, 34A09, 35XX, 47B25, 65F15, 65H17, Analyse asymptotique, Analyse stabilité, Equation poutre, Beam equation, Système dirigé
Subject Geographic:
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, University of Kansas, 1460 Jayhawk Boulevard, Lawrence KS 66045-7523, United States
ISSN:
0951-7715
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.26341253
Database:
PASCAL Archive

Weitere Informationen

We study travelling waves ϕc of second order in time PDE's utt + Lu + N(u) = 0. The linear stability analysis for these models is reduced to the question of the stability of quadratic pencils in the form λ2Id + 2cλ∂x + ℌc, where ℌc = c2∂xx + L + N'(ϕc). If ℌc is a self-adjoint operator, with a simple negative eigenvalue and a simple eigenvalue at zero, then we completely characterize the linear stability of ϕc. More precisely, we introduce an explicitly computable index ω*(ℌc) ∈ (0, ∞], so that the wave ϕc is stable if and only if |c| ≥ ω*(ℌc). The results are applicable both in the periodic case and in the whole line case. The method of proof involves a delicate analysis of a function G, associated with ℌ, whose positive zeros are exactly the positive (unstable) eigenvalues of the pencil λ2 Id + 2cλ∂x + ℌ. We would like to emphasize that the function G is not the Evans function for the problem, but rather a new object that we define herein, which fits the situation rather well. As an application, we consider three classical models—the 'good' Boussinesq equation, the Klein―Gordon―Zakharov (KGZ) system and the fourth order beam equation. In the whole line case, for the Boussinesq case and the KGZ system (and as a direct application of the main results), we compute explicitly the set of speeds which give rise to linearly stable travelling waves (and for all powers of p in the case of Boussinesq). This result is new for the KGZ system, while it generalizes the results of Alexander et al (2012, personal communication) and Alexander and Sachs (1995 Nonlinear World 2 471-507), which apply to the case p = 2. For the beam equation, we provide an implicit formula (depending only on the function ∥ϕ'c∥L2), which works for all p and for both the periodic and the whole line cases. Our results complement (and exactly match, whenever they exist) the results of a long line of investigation regarding the related notion of orbital stability of the same waves. Informally, we have found that in all the examples that we have looked at, our theory applies, whenever the Grillakis―Shatah― Strauss (GSS) theory applies. We believe that the results in this paper (or a variation thereof) will enable the linear stability analysis as well as asymptotic stability analysis for most models in the form utt + Lu + N(u) = 0.