Result: Convergence rates to stationary solutions of a gas-liquid model with external forces
Title:
Convergence rates to stationary solutions of a gas-liquid model with external forces
Authors:
Source:
Nonlinearity (Bristol. Print). 25(10):2875-2901
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Accélération de convergence, Acceleration of convergence, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Divers, Other topics in mathematical methods in physics, Analyse non linéaire, Nonlinear analysis, análisis no lineal, Arche, Arch, Arco, Comportement asymptotique, Asymptotic behavior, Comportamiento asintótico, Force, Fuerza, Liquide, Liquid, Líquido, Physique mathématique, Mathematical physics, Física matemática, Solution faible, Weak solution, Solución débil, Solution stationnaire, Steady state solution, Solución estacionaria, Stabilisation, Stabilization, Estabilización, Taux convergence, Convergence rate, Relación convergencia, 65B99, Solution asymptotique, Asymptotic solution
Document Type:
Academic journal
Article
File Description:
text
Language:
English
Author Affiliations:
The Hubei Key Laboratory of Mathematical Physics, School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
ISSN:
0951-7715
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Theoretical physics
Theoretical physics
Accession Number:
edscal.26437274
Database:
PASCAL Archive
Further Information
In this paper, we study the asymptotic behaviour of solutions to a gas-liquid model with external forces. Under some suitable assumptions on the initial data, if γ > 1 and θ ∈ (0, γ 2] ∩ (0, γ ― 1] ∩ (0, 1 ― αγ], we prove the weak solution (cQ(x, t), u(x, t)) behaviour asymptotically to the stationary one by adapting and modifying the technique of weighted estimates. In addition, if θ ∈ (0, γ / 2] ∩ (0, y — 1) ∩ (0, 1 ― αγ], following the same idea used in Zhang and Fang (2006 Arch. Ration. Mech. Anal. 182 223-53), we estimate the stabilization rate of the solution as time tends to infinity in the sense of L∞ norm.