Treffer: Mean curvature flow with obstacles
Title:
Mean curvature flow with obstacles
Authors:
Source:
Annales de l'Institut Henri Poincaré. Analyse non linéaire. 29(5):667-681
Publisher Information:
Paris: Elsevier, 2012.
Publication Year:
2012
Physical Description:
print, 28 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Géométrie, Geometry, Géométrie différentielle, Differential geometry, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Analyse non linéaire, Nonlinear analysis, análisis no lineal, Calcul 2 dimensions, Two-dimensional calculations, Discrétisation, Discretization, Discretización, Méthode discrétisation, Discretization method, Método discretización, Méthode variationnelle, Variational methods, Régularité, Regularity, Regularidad, Singularité, Singularity, Singularidad, Solution faible, Weak solution, Solución débil, Solution régulière, Regular solution, Solución regular, Unicité solution, Solution uniqueness, Unicidad solución, 49R50, 53A10, 65K10, 65Kxx, Méthode implicite
Document Type:
Fachzeitschrift
Article
File Description:
text
Language:
English
Author Affiliations:
CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, France
UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, France
CMAP, Ecole Polytechnique, CNRS, France
Dip. di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy
UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, France
CMAP, Ecole Polytechnique, CNRS, France
Dip. di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy
ISSN:
0294-1449
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.26447353
Database:
PASCAL Archive
Weitere Informationen
We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by means of a variational method, corresponding to an implicit time-discretization scheme. Assuming the regularity of the obstacles, in the two-dimensional case we show existence and uniqueness of a regular solution before the onset of singularities. Finally, we discuss an application of this result to the positive mean curvature flow.