Treffer: Mean curvature flow with obstacles

Title:
Mean curvature flow with obstacles
Source:
Annales de l'Institut Henri Poincaré. Analyse non linéaire. 29(5):667-681
Publisher Information:
Paris: Elsevier, 2012.
Publication Year:
2012
Physical Description:
print, 28 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, France
UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, France
CMAP, Ecole Polytechnique, CNRS, France
Dip. di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy
ISSN:
0294-1449
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.26447353
Database:
PASCAL Archive

Weitere Informationen

We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by means of a variational method, corresponding to an implicit time-discretization scheme. Assuming the regularity of the obstacles, in the two-dimensional case we show existence and uniqueness of a regular solution before the onset of singularities. Finally, we discuss an application of this result to the positive mean curvature flow.