Treffer: Well-posedness for the compressible Navier-Stokes-Lamé system with a free interface
Title:
Well-posedness for the compressible Navier-Stokes-Lamé system with a free interface
Authors:
Source:
Nonlinearity (Bristol. Print). 25(11):3111-3137
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 2 p
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Equations aux dérivées partielles, Partial differential equations, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Divers, Other topics in mathematical methods in physics, Analyse non linéaire, Nonlinear analysis, análisis no lineal, Contrainte mécanique, Mechanical stress, Tensión mecánica, Déplacement, Displacement, Desplazamiento, Elasticité, Elasticity, Elasticidad, Equation Navier Stokes, Navier Stokes equation, Ecuación Navier Stokes, Estimation a priori, A priori estimation, Estimación a priori, Estimation densité, Density estimation, Estimación densidad, Existence solution, Existence of solution, Existencia de solución, Interaction fluide structure, Fluid structure interaction, Interacción fluido estructura, Interface, Interfase, Physique mathématique, Mathematical physics, Física matemática, Problème bien posé, Well posed problem, Problema bien planteado, Structure système, System structure, Estructura sistema, 35Q30, Continuité
Document Type:
Fachzeitschrift
Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, University of Southern California, Los Angeles, CA 90089, United States
Department of Mathematics, The Petroleum Institute, Abu Dhabi, United Arab Emirates
Department of Mathematics, The Petroleum Institute, Abu Dhabi, United Arab Emirates
ISSN:
0951-7715
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Theoretical physics
Theoretical physics
Accession Number:
edscal.26569531
Database:
PASCAL Archive
Weitere Informationen
We address the system of fluid-structure interaction consisting of a compressible Navier-Stokes equation coupled with an elasticity equation, with the velocity and stress continuity requirements across the free moving interface. We prove the a priori estimates for existence of solutions when the initial velocity belongs to H3, the initial density is bounded from below and belongs to H3/2+r, where r > 0, and the initial velocity of the displacement is in H3/2+r.