Treffer: Spectrum of the elimination of loops and multiple arrows in coupled cell networks

Title:
Spectrum of the elimination of loops and multiple arrows in coupled cell networks
Source:
Nonlinearity (Bristol. Print). 25(11):3139-3154
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 13 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Théorie des opérateurs, Operator theory, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Algèbre linéaire numérique, Numerical linear algebra, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Divers, Other topics in mathematical methods in physics, Analyse non linéaire, Nonlinear analysis, análisis no lineal, Bifurcation, Bifurcación, Cellule, Cell, Célula, Elimination, Eliminación, Entrée ordinateur, Input, Entrada ordenador, Equation différentielle, Differential equation, Ecuación diferencial, Matrice adjacence, Adjacency matrix, Matriz adyacencia, Physique mathématique, Mathematical physics, Física matemática, Portance, Lift, Fuerza sustentación, Quotient, Cociente, Système dégénéré, Degenerate system, Sistema degenerado, Valeur propre, Eigenvalue, Valor propio, Zéro, Zero, Cero, 34XX, 47A10, 65F15, 65H17, 65Lxx, Réseau bouclé
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Centro de Matemática da Universidade do Porto (CMUP), Departamento de Matemática, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
ISSN:
0951-7715
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.26569532
Database:
PASCAL Archive

Weitere Informationen

A uniform lift of a given network is a network with no loops and no multiple arrows that admits the first network as quotient. Given a regular network (in which all cells have the same type and receive the same number of inputs and all arrows have the same type) with loops or multiple arrows, we prove that it is always possible to construct a uniform lift whose adjacency matrix has only two possible eigenvalues, namely, 0 and ―1, in addition to all eigenvalues of the initial network adjacency matrix. Moreover, this uniform lift has the minimal number of cells over all uniform lifts. We also prove that if a non-vanishing eigenvalue of the initial adjacency matrix is fixed then it is always possible to construct a uniform lift that preserves the number of eigenvalues with the same real part of that eigenvalue. Finally, for the eigenvalue zero we show that such a construction is not always possible proving that there are networks with multiple arrows whose uniform lifts all have the eigenvalue 0, in addition to all eigenvalues of the initial network adjacency matrix. Using the concept of ODE-equivalence, we prove then that it is always possible to study a degenerate bifurcation arising in a system whose regular network has multiple arrows as a bifurcation of a bigger system associated with a regular uniform network.