Treffer: Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility
Title:
Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility
Authors:
Source:
Nonlinearity (Bristol. Print). 25(11):3211-3234
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 37 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Equations aux dérivées partielles, Partial differential equations, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Divers, Other topics in mathematical methods in physics, Analyse non linéaire, Nonlinear analysis, análisis no lineal, Ecoulement diphasique, Two phase flow, Flujo difásico, Existence solution, Existence of solution, Existencia de solución, Fluide incompressible, Incompressible fluid, Fluido incompresible, Fluide visqueux, Viscous fluid, Fluido viscoso, Physique mathématique, Mathematical physics, Física matemática, Régularité solution, Solution regularity, Regularidad solución, Singularité, Singularity, Singularidad, Solution forte, Strong solution, Solución fuerte, Solution globale, Global solution, Solución global, Viscosité, Viscosity, Viscosidad, 35Q30, Existence globale, Système Stokes, Unicité
Document Type:
Fachzeitschrift
Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Florida International University, Miami, FL, 33199, United States
ISSN:
0951-7715
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Theoretical physics
Theoretical physics
Accession Number:
edscal.26569536
Database:
PASCAL Archive
Weitere Informationen
Whether or not global solutions of the 2D Navier―Stokes―Cahn―Hilliard (NS-CH) system without full viscosity and mobility can develop finite time singularities is a difficult issue. A major result of this paper deals with global regularity of strong solutions for the NS―CH system with mixed partial viscosity and mobility. In addition, the 2D NS-CH system without viscosity but with full mobility is investigated. In this case, we also prove the global existence and uniqueness of classical solutions.