Result: Stochastic stability of traffic maps
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Theoretical physics
Further Information
We study the ergodic properties of a family of traffic maps acting in the space of bi-infinite sequences of real numbers. The corresponding dynamics mimics the motion of vehicles in a simple traffic flow, which explains the name. Using connections to topological Markov chains we obtain nontrivial invariant measures, prove their stochastic stability and calculate the topological entropy. Technically these results in the deterministic setting are related to the construction of measures of maximal entropy via measures uniformly distributed on periodic points of a given period, while in the random setting we construct (spatially) Markov invariant measures directly. In distinction to conventional results the limiting measures in the non-lattice case are non-ergodic. The average velocity of individual 'vehicles' as a function of their density and its stochastic stability is studied as well.