Result: A C1 generic condition for existence of symbolic extensions of volume preserving diffeomorphisms

Title:
A C1 generic condition for existence of symbolic extensions of volume preserving diffeomorphisms
Authors:
Source:
Nonlinearity (Bristol. Print). 25(12):3505-3525
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 42 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Faculdade de Matematica, Universidade Federal de Uberlândia, 34-32309442 Uberlândia-MG, Brazil
ISSN:
0951-7715
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.26755542
Database:
PASCAL Archive

Further Information

We prove that a C1-generic volume preserving diffeomorphism has a symbolic extension if and only if this diffeomorphism is partial hyperbolic. This result is obtained by means of good dichotomies. In particular, we prove Bonatti's conjecture in the volume preserving scenario. More precisely, in the complement of Anosov diffeomorphisms we have densely robust heterodimensional cycles.