Treffer: A STATIC CONDENSATION REDUCED BASIS ELEMENT METHOD: APPROXIMATION AND A POSTERIORI ERROR ESTIMATION
School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138 MA, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
We propose a new reduced basis element-cum-component mode synthesis approach for parametrized elliptic coercive partial differential equations. In the Offline stage we construct a Library of interoperable parametrized reference components relevant to some family of problems; in the Online stage we instantiate and connect reference components (at ports) to rapidly form and query parametric systems. The method is based on static condensation at the interdomain level, a conforming eigen-function port representation at the interface level, and finally Reduced Basis (RB) approximation of Finite Element (FE) bubble functions at the intradomain level. We show under suitable hypotheses that the RB Schur complement is close to the FE Schur complement: we can thus demonstrate the stability of the discrete equations; furthermore, we can develop inexpensive and rigorous (system-level) a posteriori error bounds. We present numerical results for model many-parameter heat transfer and elasticity problems with particular emphasis on the Online stage; we discuss flexibility, accuracy, computational performance, and also the effectivity of the a posteriori error bounds.