Treffer: Optimization of environmental management strategies through a dynamic stochastic possibilistic multiobjective program

Title:
Optimization of environmental management strategies through a dynamic stochastic possibilistic multiobjective program
Source:
Journal of hazardous materials (Print). 246-247:257-266
Publisher Information:
Kidlington: Elsevier, 2013.
Publication Year:
2013
Physical Description:
print, 30 ref
Original Material:
INIST-CNRS
Subject Terms:
Environment, Environnement, Pollution, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Pollution, Déchets, Wastes, Procédés généraux de traitement et de stockage, General treatment and storage processes, Déchets urbains et domestiques, Urban and domestic wastes, Pollution atmosphérique, Atmospheric pollution, Généralités, General, Pollution globale de l'environnement, Global environmental pollution, Programmation mathématique, Mathematical programming, Programación matemática, Déchet solide, Solid waste, Residuos sólidos, Déchet urbain, Urban waste, Desperdicio urbano, Emission gaz, Gas emission, Emisión gas, Emission polluant, Pollutant emission, Emisión contaminante, Expansion, Expansión, Gaz effet serre, Greenhouse gas, Gas efecto invernadero, Gestion déchet, Waste management, Tratamiento desperdicios, Gestion environnement, Environmental management, Gestiòn medio ambiente, Impact environnement, Environment impact, Impacto medio ambiente, Incertitude, Uncertainty, Incertidumbre, Loi probabilité, Probability distribution, Ley probabilidad, Lutte antipollution, Pollution control, Lucha anticontaminación, Modélisation, Modeling, Modelización, Optimisation, Optimization, Optimización, Planification, Planning, Planificación, Pollution air, Air pollution, Contaminación aire, Programmation linéaire, Linear programming, Programación lineal, Programmation multiobjectif, Multiobjective programming, Programación multiobjetivo, Réduction pollution, Pollution abatement, Fuzzy possibilistic programming, Greenhouse gas emission control, Multiobjective linear programming, Municipal solid waste management
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, United States
Institute of Energy, Environment & Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
ISSN:
0304-3894
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Pollution
Accession Number:
edscal.27057680
Database:
PASCAL Archive

Weitere Informationen

Greenhouse gas (GHG) emissions from municipal solid waste (MSW) management facilities have become a serious environmental issue. In MSW management, not only economic objectives but also environmental objectives should be considered simultaneously. In this study, a dynamic stochastic possibilistic multiobjective programming (DSPMP) model is developed for supporting MSW management and associated GHG emission control. The DSPMP model improves upon the existing waste management optimization methods through incorporation of fuzzy possibilistic programming and chance-constrained programming into a general mixed-integer multiobjective linear programming (MOP) framework where various uncertainties expressed as fuzzy possibility distributions and probability distributions can be effectively reflected. Two conflicting objectives are integrally considered, including minimization of total system cost and minimization of total GHG emissions from waste management facilities. Three planning scenarios are analyzed and compared, representing different preferences of the decision makers for economic development and environmental-impact (i.e. GHG-emission) issues in integrated MSW management. Optimal decision schemes under three scenarios and different pi levels (representing the probability that the constraints would be violated) are generated for planning waste flow allocation and facility capacity expansions as well as GHG emission control. The results indicate that economic and environmental tradeoffs can be effectively reflected through the proposed DSPMP model. The generated decision variables can help the decision makers justify and/or adjust their waste management strategies based on their implicit knowledge and preferences.