Result: Algorithm for Reliability Evaluation of Nonrepairable Phased-Mission Systems Consisting of Gradually Deteriorating Multistate Elements

Title:
Algorithm for Reliability Evaluation of Nonrepairable Phased-Mission Systems Consisting of Gradually Deteriorating Multistate Elements
Source:
IEEE transactions on systems, man, and cybernetics. Systems (Print). 43(1):63-73
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2013.
Publication Year:
2013
Physical Description:
print, 40 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Théorie des probabilités et processus stochastiques, Probability theory and stochastic processes, Analyse stochastique, Stochastic analysis, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Théorie de la fiabilité. Renouvellement des équipements, Reliability theory. Replacement problems, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Automatique théorique. Systèmes, Control theory. Systems, Analyse des systèmes de commande, Control system analysis, Algorithme récursif, Recursive algorithm, Algoritmo recursivo, Changement phase, Phase change, Cambio fase, Dépendance de l'état, State dependence, Dependencia del estado, Dépendance donnée, Data dependency, Dependencia dato, Etat transition, Transition state, Estado transitorio, Fiabilité, Reliability, Fiabilidad, Méthode récursive, Recursive method, Método recursivo, Méthode séparation et évaluation, Branch and bound method, Método branch and bound, Méthode énumération implicite, Implicit enumeration method, Método enumeración implícita, Probabilité conditionnelle, Conditional probability, Probabilidad condicional, Système invariant, Invarying system, Sistema invariante, Système multiphase, Multiphase system, Sistema multifase, Sûreté fonctionnement, Dependability, Seguridad funcionamiento, Temps calcul, Computation time, Tiempo computación, Transition phase, Phase transitions, Transición fase, Multistate element, phased-mission systems (PMS), recursive algorithm, reliability analysis
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Collaborative Autonomic Computing Laboratory, School of Computer Science, University of Electronics Science and Technology of China, Chengdu 610054, China
Israel Electric Corporation, Haifa 31000, Israel
Parametric Technology Corporation, Greensburg, PA 15601, United States
Department of Electrical and Computer Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, United States
ISSN:
2168-2216
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics

Operational research. Management
Accession Number:
edscal.27162800
Database:
PASCAL Archive

Further Information

Reliability analysis of phased-mission systems (PMS) must consider the statistical dependences of element states across different phases as well as changes in system configuration, success criteria, and component behavior. This paper proposes a recursive method for the exact reliability evaluation of PMS consisting of nonidentical independent nonrepairable multistate elements. The method is based on conditional probabilities and the branch-and-bound principle. It is invariant to changes in system structure, demand, and the elements' state transition rates among phases. The main advantage of this method is that it does not require the composition of decision diagrams and can be fully automated. Both analytical and numerical examples are presented to illustrate the application and advantages of the proposed method. The computational performance of the proposed algorithm is illustrated through comprehensive experimentation on the CPU running time of the algorithm.