Treffer: Low-rank quadratic semidefinite programming

Title:
Low-rank quadratic semidefinite programming
Source:
Neurocomputing (Amsterdam). 106:51-60
Publisher Information:
Amsterdam: Elsevier, 2013.
Publication Year:
2013
Physical Description:
print, 35 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Complexité calcul, Computational complexity, Complejidad computación, Convexité, Convexity, Convexidad, Echelle grande, Large scale, Escala grande, Efficacité, Efficiency, Eficacia, Estimation paramètre, Parameter estimation, Estimación parámetro, Extensibilité, Scalability, Estensibilidad, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Modélisation, Modeling, Modelización, Méthode noyau, Kernel method, Método núcleo, Métrique, Metric, Métrico, Problème valeur propre, Eigenvalue problem, Problema valor propio, Programmation mathématique, Mathematical programming, Programación matemática, Programmation non convexe, Non convex programming, Programación no convexa, Programmation quadratique, Quadratic programming, Programación cuadrática, Programmation semi définie, Semi definite programming, Programacíon semi definida, Recherche locale, Local search, Busca local, Représentation parcimonieuse, Sparse representation, Representación parsimoniosa, Réduction dimension, Dimension reduction, Reducción dimensión, Eigenvalue decomposition, Kernel learning, Low-rank and sparse matrix approximation, Metric learning, Semidefinite programming
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
School of Computer Science & Engineering, South China University of Technology, China
Advanced Digital Sciences Center, Illinois at Singapore Pte, Singapore
King Abdullah University of Science and Technology, Saudi Arabia
Faculty of Computer, Guangdong University of Technology, China
ISSN:
0925-2312
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.27163431
Database:
PASCAL Archive

Weitere Informationen

Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method.