Treffer: EXIT-Chart-Matching-Aided Near-Capacity Coded Modulation Design and a BICM-ID Design Example for Both Gaussian and Rayleigh Channels
Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Shenzhen City Key Laboratory of Digital TV System, Shenzhen 518057, China
School of Electronics and Computer Science, University of Southampton, SO17 1BJ Southampton, United Kingdom
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Telecommunications and information theory
Weitere Informationen
Bit-interleaved coded modulation with iterative decoding (BICM-ID) is investigated, wherein a novel method of designing amplitude phase-shift keying (APSK) constellations is proposed, which is capable of outperforming both traditional quadrature amplitude modulation (QAM) and nonuniformly spaced QAM (NU-QAM). It is shown that the channel capacity can be approached by the proposed M-APSK constellation as M tends to infinity. Additionally, a new algorithm is introduced for finding the best bit-to-symbol mapping. Furthermore, when signal space diversity is also employed, our extrinsic information transfer (EXIT) chart analysis and Monte Carlo simulations demonstrate that the proposed BICM-ID schemes exhibit a near-Shannon-capacity performance for transmission over both additive white Gaussian noise (AWGN) and Rayleigh fading channels. For a block length of 64 800 bits, the bit-error-rate (BER) curve of the proposed BICM-ID 16/64-APSK scheme is only about 0.8 and 1.0 dB away from the Gaussian-input Shannon limit over AWGN and Rayleigh fading channels, respectively, at the BER of 10―5 and for a code rate of 1/2.