Treffer: Online Kernel Principal Component Analysis: A Reduced-Order Model

Title:
Online Kernel Principal Component Analysis: A Reduced-Order Model
Authors:
Source:
IEEE transactions on pattern analysis and machine intelligence. 34(9):1814-1826
Publisher Information:
Los Alamitos, CA: IEEE Computer Society, 2012.
Publication Year:
2012
Physical Description:
print, 58 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Algorithme récursif, Recursive algorithm, Algoritmo recursivo, Analyse composante principale, Principal component analysis, Análisis componente principal, Analyse donnée, Data analysis, Análisis datos, Borne erreur, Error bound, Limite error, Borne supérieure, Upper bound, Cota superior, Caractère manuscrit, Manuscript character, Carácter manuscrito, Efficacité, Efficiency, Eficacia, En ligne, On line, En línea, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Modélisation, Modeling, Modelización, Méthode itérative, Iterative method, Método iterativo, Méthode noyau, Kernel method, Método núcleo, Reconnaissance optique caractère, Optical character recognition, Reconocimento óptico de caracteres, Réduction dimension, Dimension reduction, Reducción dimensión, Réduction donnée, Data reduction, Reducción datos, Résultat expérimental, Experimental result, Resultado experimental, Système ordre réduit, Reduced order systems, Reducción del orden de un modelo, Oja's rule, machine learning, online algorithm, recursive algorithm, reproducing kernel
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Laboratoire de Modélisation et Sûreté des Systèmes, Institut Charles Delaunay (UMR CNRS 6279), Université de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes, France
ISSN:
0162-8828
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.27252001
Database:
PASCAL Archive

Weitere Informationen

Kernel principal component analysis (kernel-PCA) is an elegant nonlinear extension of one of the most used data analysis and dimensionality reduction techniques, the principal component analysis. In this paper, we propose an online algorithm for kernel-PCA. To this end, we examine a kernel-based version of Oja's rule, initially put forward to extract a linear principal axe. As with most kernel-based machines, the model order equals the number of available observations. To provide an online scheme, we propose to control the model order. We discuss theoretical results, such as an upper bound on the error of approximating the principal functions with the reduced-order model. We derive a recursive algorithm to discover the first principal axis, and extend it to multiple axes. Experimental results demonstrate the effectiveness of the proposed approach, both on synthetic data set and on images of handwritten digits, with comparison to classical kernel-PCA and iterative kernel-PCA.