Treffer: Comparing content and context based similarity for musical data

Title:
Comparing content and context based similarity for musical data
Source:
Timely Neural Networks Applications in Engineering, Selected Papers from the 12th EANN International Conference, 2011Neurocomputing (Amsterdam). 107:69-76
Publisher Information:
Amsterdam: Elsevier, 2013.
Publication Year:
2013
Physical Description:
print, 40 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Acoustique, Acoustics, Acoustique musicale, Music and musical intruments, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Systèmes d'information. Bases de données, Information systems. Data bases, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Psychologie. Psychophysiologie, Psychology. Psychophysiology, Perception, Audition, Psychologie. Psychanalyse. Psychiatrie, Psychology. Psychoanalysis. Psychiatry, Acoustique musicale, Musical acoustics, Acústica musical, Audition, Hearing, Audición, Borne supérieure, Upper bound, Cota superior, Contexte, Context, Contexto, Echelle grande, Large scale, Escala grande, Etude expérimentale, Experimental study, Estudio experimental, Extraction forme, Pattern extraction, Extracción forma, Forme libre, Free form, Forma libre, Musique, Music, Música, Métadonnée, Metadata, Metadatos, Recherche information, Information retrieval, Búsqueda información, Réseau neuronal, Neural network, Red neuronal, Réseau social, Social network, Red social, Résultat expérimental, Experimental result, Resultado experimental, Sensibilité contexte, Context aware, Sensibilidad contexto, Similitude, Similarity, Similitud, Solution similitude, Similarity solution, Solución semejanza, Sémantique, Semantics, Semántica, Texte, Text, Texto, Acoustique audio, Audio acoustics, Acústica audio, Extracted musical features, Music information retrieval, Musical similarity, Neural networks, Social network tags
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Informatics, Ionian University, Kerkyra 49100, Greece
Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Pandazidou 193, Orestiada 68200, Greece
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Physics: acoustics

Psychology. Ethology

FRANCIS
Accession Number:
edscal.27313476
Database:
PASCAL Archive

Weitere Informationen

Similarity measurement between two musical pieces is a hard problem. Humans perceive such similarity by employing a large amount of contextually semantic information. Commonly used content-based methodologies rely on data descriptors of limited semantic value, and thus are reaching a performance upper bound. Recent research pertaining to contextual information assigned as free-form text (tags) in social networking services has indicated tags to be highly effective in improving the accuracy of music similarity. In this paper, a large scale (20k real music data) similarity measurement is performed using mainstream off-the-shelf methodologies relying on both content and context. In addition, the accuracy of the examined methodologies is tested against not only objective metadata but also real-life user listening data as well. Experimental results illustrate the conditionally substantial gains of the context-based methodologies and not a so close match of these methods with the similarity based on real-user listening data.