Result: Metaheuristic approach for constructing functional test-suites

Title:
Metaheuristic approach for constructing functional test-suites
Source:
IET software (Print). 7(2):104-117
Publisher Information:
Stevenage: Institution of Engineering and Technology, 2013.
Publication Year:
2013
Physical Description:
print, 30 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Gestion des mémoires et des fichiers (y compris la protection et la sécurité des fichiers), Memory and file management (including protection and security), Génie logiciel, Software engineering, Performances des systèmes informatiques. Fiabilité, Computer systems performance. Reliability, Analyse fonctionnelle, Functional analysis, Análisis funcional, Composant logiciel, Software component, Componente logicial, Couverture test, Test coverage, Test cubierta, Donnée économique, Economic data, Dato económico, Efficacité, Efficiency, Eficacia, Métamodèle, Metamodel, Metamodelo, Méthode combinatoire, Combinatorial method, Método combinatorio, Méthode heuristique, Heuristic method, Método heurístico, Plan expérience, Experimental design, Plan experiencia, Problème combinatoire, Combinatorial problem, Problema combinatorio, Recuit simulé, Simulated annealing, Recocido simulado, Solution optimale, Optimal solution, Solución óptima, Système complexe, Complex system, Sistema complejo, Sécurité informatique, Computer security, Seguridad informatica, Vérification programme, Program verification, Verificación programa
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Instituto Tecnológico Superior de Salvatierra, Madero 303, Salvatierra Gto. 48900, Mexico
Information Technology Laboratory, CINVESTAV-TAMAULIPAS, Ciudad Victoria, Tamps, Mexico
Instituto de Instrumentación para Imagen Molecular (13M), Centro mixto CSIC - Universitat Politècnica de València ― CIEMAT, Camino de Vera s/n, Valencia 46022, Spain
ISSN:
1751-8806
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.27322220
Database:
PASCAL Archive

Further Information

Today, software systems are complex and have many possible configurations. A deficient software testing process often leads to unfortunate consequences, including data losses, large economic losses, security breaches, and even bodily harm. Thus, the problem of performing effective and economical testing is a key issue. Combinatorial testing is a method that can reduce cost and increase the effectiveness of software testing for many applications. It is based on constructing economical sized test-suites that provide coverage of the most prevalent configurations. Mixed covering arrays (MCAs) are combinatorial structures that can be used to represent these test-suites. MCAs are combinatorial objects represented as matrices having a test case per row. MCAs are small, in comparison to an exhaustive approach, and guarantee a level of interaction coverage among the parameters involved. This study presents a metaheuristic approach based on a simulated annealing (SA) algorithm for constructing MCAs. This algorithm incorporates several distinguishing features, including an efficient heuristic to generate good quality initial solutions, and a compound neighbourhood function that combines two carefully designed neighbourhood functions. The experimental design involved a benchmark reported in the literature and two real cases of software components. The experimental evidence showed that the SA algorithm equals or improves the obtained results by other approaches reported in the literature, and also finds the optimal solution in some of the solved cases.