Treffer: Modeling and simulation of injection control system on a four-stroke type diesel engine development platform using artificial neural networks

Title:
Modeling and simulation of injection control system on a four-stroke type diesel engine development platform using artificial neural networks
Source:
Neural computing & applications (Print). 22(7-8):1713-1725
Publisher Information:
London: Springer, 2013.
Publication Year:
2013
Physical Description:
print, 32 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Neurology, Neurologie, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Applications, Fiabilité, test de durée de vie, contrôle de la qualité, Reliability, life testing, quality control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Calcul neuronal, Neural computation, computación neuronal, Développement, Development, Desarrollo, Fiabilité, Reliability, Fiabilidad, Implémentation, Implementation, Implementación, Modélisation, Modeling, Modelización, Moteur diesel, Diesel engine, Motor diesel, Méthode optimisation, Optimization method, Método optimización, Optimisation, Optimization, Optimización, Programmation système, System programming, Programación sistema, Réseau neuronal non bouclé, Feedforward neural nets, Réseau neuronal, Neural network, Red neuronal, Simulation système, System simulation, Simulación sistema, Surface, Superficie, Système commande, Control system, Sistema control, Variété mathématique, Manifold, Variedad matemática, 49XX, 62N05, 62P30, 65K10, 65Kxx, Réseau neuronal artificiel, Artificial neural networks, Diesel motors, ECU, Fuel injection control
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Electronics and Communications, Kocaeli University Engineering Faculty, Umuttepe Campus, 41380 İzmit, Kocaeli, Turkey
Department of Electrical Engineering, Kocaeli University Engineering Faculty, Umuttepe Campus, 41380 İzmit, Kocaeli, Turkey
ISSN:
0941-0643
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.27623623
Database:
PASCAL Archive

Weitere Informationen

Efficiency, reliability and emission demands on fuel consumptions have directed us to develop a microcontroller-based electromechanical educational platform that emulates the basic injection process of common four-stroke type diesel engines. Modeling of a system provides rapid programming and implementation capabilities. This study focuses on modeling and simulation of the platform in order to observe the results of novel methods and development strategies. The model determines the injection time (IT) and injection order (IO) of the related pistons. Determination of the IO has standard steps, where of IT which directly affects the fuel consumption lets novel optimization methods. In traditional applications, IT is assigned by a lookup table, whose inputs are crankshaft speed (CS) and manifold absolute pressure (MAP) values. In this study, an alternative relation surface created by feedforward artificial neural networks (ANNs) is suggested to determine the IT. The novel method could interpolate precise intermediate values of IT which bring about optimization in fuel consumption. Performances of the traditional method and the ANNs method are compared.