Treffer: A method for solving nonlinear time-dependent drainage model

Title:
A method for solving nonlinear time-dependent drainage model
Authors:
Source:
Neural computing & applications (Print). 23(2):411-415
Publisher Information:
London: Springer, 2013.
Publication Year:
2013
Physical Description:
print, 33 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Neurology, Neurologie, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Transformées intégrales, calcul opérationnel, Integral transforms, operational calculus, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Probabilités et statistiques numériques, Numerical methods in probability and statistics, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Calcul neuronal, Neural computation, computación neuronal, Discrétisation, Discretization, Discretización, Equation non linéaire, Non linear equation, Ecuación no lineal, Linéarisation, Linearization, Linearización, Modèle non linéaire, Non linear model, Modelo no lineal, Méthode discrétisation, Discretization method, Método discretización, Méthode décomposition, Decomposition method, Método descomposición, Méthode numérique, Numerical method, Método numérico, Méthode perturbation, Perturbation method, Método perturbación, Réseau neuronal, Neural network, Red neuronal, Résolution (math), Solving, Resolución (matemática), Théorie perturbation, Perturbation theory, Teoría perturbación, Transformation Laplace, Laplace transformation, Transformación Laplace, 44A10, 65C20, 65K15, Adomian decomposition method, Drainage model equations, Laplace transform
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Zhejiang University, Hangzhou 310027, China
ISSN:
0941-0643
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.27658245
Database:
PASCAL Archive

Weitere Informationen

The purpose of this paper is to present a method for solving nonlinear time-dependent drainage model. This method is based on the perturbation theory and Laplace transformation. The proposed technique allows us to obtain an approximate solution in a series form. The computed results are in good agreement with the results of Adomian decomposition method. Results are presented graphically and in tabulated forms to study the efficiency and accuracy of method. The present approach provides a reliable technique, which avoids the tedious work needed by classical techniques and existing numerical methods. The nonlinear time-dependent drainage model is solved without linearizing or discretizing the nonlinear terms of the equation. The method does not require physically unrealistic assumptions, linearization or discretization in order to find the solutions of the given problems.