Result: A fast two-stage ACO algorithm for robotic path planning : ISNN 2011
Center of CIMS, Tongji University, Shanghai, China
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Further Information
Ant colony optimization (ACO) algorithms are often used in robotic path planning; however, the algorithms have two inherent problems. On one hand, the distance elicitation function and transfer function are usually used to improve the ACO algorithms, whereas, the two indexes often fail to balance between algorithm efficiency and optimization effect; On the other hand, the algorithms are heavily affected by environmental complexity. Based on the scent pervasion principle, a fast two-stage ACO algorithm is proposed in this paper, which overcomes the inherent problems of traditional ACO algorithms. The basic idea is to split the heuristic search into two stages: preprocess stage and path planning stage. In the preprocess stage, the scent information is broadcasted to the whole map and then ants do path planning under the direction of scent information. The algorithm is tested in maps of various complexities and compared with different algorithms. The results show the good performance and convergence speed of the proposed algorithm, even the high grid resolution does not affect the quality of the path found.