Treffer: Estimation of effluent quality using PLS-based extreme learning machines : Extreme Learning Machines Theory & Applications
The Key Laboratory of Chemical Industry Process Control Technology, Shenyang University of Chemical Technology, Shenyang 110042, Liaoning Province, China
Research Center of Automation, Northeastern University, Shenyang 110004, Liaoning Province, China
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Weitere Informationen
The accurate and reliable measurement of effluent quality indices is essential for the implementation of successful control and optimization of wastewater treatment plants. In order to enhance the estimate performance in terms of accuracy and reliability, we present a partial least-squares-based extreme learning machine (called PLS-ELM) in this paper. The partial least squares (PLS) regression is applied to the ELM framework to improve the algebraic property of the hidden output matrix, which can be ill-conditional due to the high multicollinearity of the hidden layer output. The main idea behind our proposed PLS-ELM is to achieve a robust generalization performance by extracting a reduced number of latent variables from the hidden layer and using orthogonal projection operations. The results from a case study of a municipal wastewater treatment plant show that the PLS-ELM can effectively capture the input―output relationship with favorable performance against the conventional ELM.