Treffer: Model selection of extreme learning machine based on multi-objective optimization : Extreme Learning Machines Theory & Applications
Management Institute, Xinxiang Medical University, Xinxiang 453003, Henan, China
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Weitere Informationen
As a novel learning algorithm for single-hidden-layer feedforward neural networks, extreme learning machines (ELMs) have been a promising tool for regression and classification applications. However, it is not trivial for ELMs to find the proper number of hidden neurons due to the nonoptimal input weights and hidden biases. In this paper, a new model selection method of ELM based on multi-objective optimization is proposed to obtain compact networks with good generalization ability. First, a new leave-one-out (LOO) error bound of ELM is derived, and it can be calculated with negligible computational cost once the ELM training is finished. Furthermore, the hidden nodes are added to the network one-by-one, and at each step, a multi-objective optimization algorithm is used to select optimal input weights by minimizing this LOO bound and the norm of output weight simultaneously in order to avoid over-fitting. Experiments on five UCI regression data sets are conducted, demonstrating that the proposed algorithm can generally obtain better generalization performance with more compact network than the conventional gradient-based back-propagation method, original ELM and evolutionary ELM.