Treffer: Application of artificial neural networks for analytical modeling of Charpy impact energy of functionally graded steels

Title:
Application of artificial neural networks for analytical modeling of Charpy impact energy of functionally graded steels
Authors:
Source:
Neural computing & applications (Print). 22(3-4):731-745
Publisher Information:
London: Springer, 2013.
Publication Year:
2013
Physical Description:
print, 66 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Neurology, Neurologie, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Plans d'expériences et configurations, Designs and configurations, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Probabilités et statistiques numériques, Numerical methods in probability and statistics, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Calcul neuronal, Neural computation, computación neuronal, Composition, Composicion, Contrainte mécanique, Mechanical stress, Tensión mecánica, Diffusion, Difusión, Donnée expérimentale, Experimental data, Dato experimental, Electrode, Electrodes, Electrodo, Energie, Energy, Energía, Modélisation, Modeling, Modelización, Mélange loi probabilité, Mixed distribution, Mezcla ley probabilidad, Méthode numérique, Numerical method, Método numérico, Relation contrainte déformation, Stress strain relation, Relación tensión deformación, Réseau neuronal, Neural network, Red neuronal, Test statistique, Statistical test, Test estadístico, 05Bxx, 65C20, 65K15, Modèle réseau neuronal, Réseau neuronal artificiel, Artificial neural networks, Austenitic FGS, Charpy impact energy, Chemical concentration profile, Crack divider, ESR, Ferritic FGS, Microhardness
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Materials Science and Engineering, Saveh Branch. Islamic Azad University, Saveh, Iran, Islamic Republic of
ISSN:
0941-0643
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.27659251
Database:
PASCAL Archive

Weitere Informationen

In the present study, the Charpy impact energy of ferritic and austenitic functionally graded steel produced by electroslag remelting has been modeled in crack divider configuration. To produce functionally graded steels, two slices of plain carbon steel and austenitic stainless steels were spot welded and used as electroslag remelting electrode. Functionally graded steel containing graded layers of ferrite and austenite may be fabricated via diffusion of alloying elements during remelting stage. Vickers microhardness profile of the specimen has been obtained experimentally and modeled with artificial neural networks. To build the model for graded ferritic and austenitic steels, training, testing and validation using, respectively, 174 and 120 experimental data were conducted. According to the input parameters, in the neural networks model, the Vickers microhardness of each layer was predicted. A good fit equation that correlates the Vickers microhardness of each layer to its corresponding chemical composition was achieved by the optimized network for both ferritic and austenitic graded steels. Afterward, the Vickers microhardness of each layer in functionally graded steels was related to the yield stress of the corresponding layer and by assuming Holloman relation for stress―strain curve of each layer, the area under each stress―strain curve was acquired. Finally, by applying the rule of mixtures, Charpy impact energy of functionally graded steels in crack divider configuration was found through numerical method. The obtained results from the proposed model are in good agreement with those acquired from the experiments.