Treffer: The Approximate Maximum-Likelihood Certificate
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
The confidence in the reliability of a codeword output by some (not necessarily optimal) decoding algorithm is discussed. A new property which relies on the linear programming (LP) decoder, the approximate maximum-likelihood certificate (AMLC), is introduced to address this issue as follows. First, the channel output vector is decoded by some symmetric decoder D, e.g., belief propagation or min-sum algorithm decoding. Second, the channel output vector is decoded by LP decoding. Third, if the decoding result of D is a codeword, its LP value is compared to the LP value of the LP decoding result (the latter need not be a codeword). If these two values are close, the AMLC holds. Using upper bounding techniques, we show that the conditional frame error probability given that the AMLC holds, is with some degree of confidence below a threshold. In channels with low noise, this threshold is orders of magnitude lower than the simulated frame error rate, and our bound holds with a very high degree of confidence. This is in stark contrast with standard Monte Carlo simulation, which would require excessively long runs to demonstrate like performance. When the AMLC holds, our approach thus provides the decoder with extra error detection capability, which is especially important in applications requiring high data integrity.