Treffer: The Approximate Maximum-Likelihood Certificate

Title:
The Approximate Maximum-Likelihood Certificate
Source:
IEEE transactions on information theory. 59(9):6049-6059
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2013.
Publication Year:
2013
Physical Description:
print, 21 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie de l'information, Information theory, Théorie du signal et des communications, Signal and communications theory, Codage, codes, Coding, codes, Code correcteur erreur, Error correcting code, Código corrector error, Algorithme optimal, Optimal algorithm, Algoritmo óptimo, Approche crédibiliste, Credal approach, Enfoque credal, Borne supérieure, Upper bound, Cota superior, Code contrôle parité, Parity check codes, Distance minimale, Minimal distance, Distancia mínima, Décodage maximum vraisemblance, Maximum likelihood decoding, Descodificación máxima verosimilitud, Détection erreur, Error detection, Detección error, Evaluation performance, Performance evaluation, Evaluación prestación, Fiabilité, Reliability, Fiabilidad, Intégrité donnée, Data integrity, Maximum vraisemblance, Maximum likelihood, Maxima verosimilitud, Méthode Monte Carlo, Monte Carlo method, Método Monte Carlo, Probabilité conditionnelle, Conditional probability, Probabilidad condicional, Probabilité erreur, Error probability, Probabilidad error, Programmation linéaire, Linear programming, Programación lineal, Simulation numérique, Numerical simulation, Simulación numérica, Taux erreur, Error rate, Indice error, Vitesse séquentielle, Frame rate, Linear programming (LP) decoding, low-density parity-check (LDPC) codes, maximum likelihood (ML) decoding, minimum distance, upper bounds on error probability
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
ISSN:
0018-9448
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.27677313
Database:
PASCAL Archive

Weitere Informationen

The confidence in the reliability of a codeword output by some (not necessarily optimal) decoding algorithm is discussed. A new property which relies on the linear programming (LP) decoder, the approximate maximum-likelihood certificate (AMLC), is introduced to address this issue as follows. First, the channel output vector is decoded by some symmetric decoder D, e.g., belief propagation or min-sum algorithm decoding. Second, the channel output vector is decoded by LP decoding. Third, if the decoding result of D is a codeword, its LP value is compared to the LP value of the LP decoding result (the latter need not be a codeword). If these two values are close, the AMLC holds. Using upper bounding techniques, we show that the conditional frame error probability given that the AMLC holds, is with some degree of confidence below a threshold. In channels with low noise, this threshold is orders of magnitude lower than the simulated frame error rate, and our bound holds with a very high degree of confidence. This is in stark contrast with standard Monte Carlo simulation, which would require excessively long runs to demonstrate like performance. When the AMLC holds, our approach thus provides the decoder with extra error detection capability, which is especially important in applications requiring high data integrity.