Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Sparse Multi-Scale Diffeomorphic Registration: The Kernel Bundle Framework

Title:
Sparse Multi-Scale Diffeomorphic Registration: The Kernel Bundle Framework
Source:
Scale-Space and Variational MethodsJournal of mathematical imaging and vision. 46(3):292-308
Publisher Information:
Heidelberg: Springer, 2013.
Publication Year:
2013
Physical Description:
print, 23 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
The Image Group, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
BiomedIQ A/S, Copenhagen, Denmark
Asclepios Project-Team, INRIA Sophia-Antipolis, Sophia Antipolis, France
ISSN:
0924-9907
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.27681696
Database:
PASCAL Archive

Weitere Informationen

In order to detect small-scale deformations during disease propagation while allowing large-scale deformation needed for inter-subject registration, we wish to model deformation at multiple scales and represent the deformation compactly at the relevant scales only. This paper presents the kernel bundle extension of the LDDMM framework that allows multiple kernels at multiple scales to be incorporated in the registration. We combine sparsity priors with the kernel bundle resulting in compact representations across scales, and we present the mathematical foundation of the framework with derivation of the KB-EPDiff evolution equations. Through examples, we illustrate the influence of the kernel scale and show that the method achieves the important property of sparsity across scales. In addition, we demonstrate on a dataset of annotated lung CT images how the kernel bundle framework with a compact representation reaches the same accuracy as the standard method optimally tuned with respect to scale.