Treffer: Sparse matrix―vector multiplication on the Single-Chip Cloud Computer many-core processor

Title:
Sparse matrix―vector multiplication on the Single-Chip Cloud Computer many-core processor
Source:
Heterogeneity on Parallel and Distributed ComputingJournal of parallel and distributed computing (Print). 73(12):1539-1550
Publisher Information:
Amsterdam: Elsevier, 2013.
Publication Year:
2013
Physical Description:
print, 29 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Gestion des mémoires et des fichiers (y compris la protection et la sécurité des fichiers), Memory and file management (including protection and security), Accès mémoire, Storage access, Acceso memoria, Calcul matriciel, Matrix calculus, Cálculo de matrices, Carte graphique, Graphic processing unit, Unidad de proceso gráfico, Consommation énergie, Energy consumption, Consumo energía, Coprocesseur, Coprocessor, Coprocesador, Etude expérimentale, Experimental study, Estudio experimental, Irrégularité, Irregularity, Irregularidad, Machine unique, Single machine, Máquina única, Matrice creuse, Sparse matrix, Matriz dispersa, Microprocesseur, Microprocessor, Microprocesador, Numérotation, Numbering, Numerotación, Optimisation, Optimization, Optimización, Parallélisme massif, Massive parallelism, Paralelismo masivo, Permutation, Permutación, Processeur multicoeur, Multicore processor, Procesador MultiNúcleo, Produit matrice, Matrix product, Producto matriz, Algorithme irrégulier, Irregular Algorithm, Algoritmo irregular, Many-core, Performance, Power efficiency
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Centro de Investigación en Tecnoloxías da Información (CITIUS), Universidade de Santiago de Compostela, Spain
ISSN:
0743-7315
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.27889728
Database:
PASCAL Archive

Weitere Informationen

The microprocessor industry has responded to memory, power and ILP walls by turning to many-core processors, increasing parallelism as the primary method to improve processor performance. These processors are expected to consist of tens or even hundreds of cores. One of these future processors is the 48-core experimental processor Single-Chip Cloud Computer (SCC). The SCC was created by Intel Labs as a platform for many-core software research. In this work we study the behavior of an important irregular application such as the Sparse Matrix―Vector multiplication (SpMV) on the SCC processor in terms of performance and power efficiency. In addition, some of the most successful optimization techniques for this kernel are evaluated. In particular, reordering, blocking and data compression techniques have been considered. Our experiments give some key insights that can serve as guidelines for the understanding and optimization of the SpMV kernel on this architecture. Furthermore, an architectural comparison of the SCC processor with several leading multicore processors and GPUs is performed, including the new Intel Xeon Phi coprocessor. The SCC only outperforms the Itanium2 multicore processor. Best performance results are observed for the high-end GPUs and the Phi, while reaching low values with respect to their peak performance. In terms of power efficiency, we must highlight the good behavior of the ATI GPUs.