Result: Ortho-to-Para Ratio in Interstellar Water on the Sightline toward Sagittarius B2(N)

Title:
Ortho-to-Para Ratio in Interstellar Water on the Sightline toward Sagittarius B2(N)
Source:
The journal of physical chemistry. A. 117(39):9661-9665
Publisher Information:
Washington, DC: American Chemical Society, 2013.
Publication Year:
2013
Physical Description:
print, 26 ref
Original Material:
INIST-CNRS
Time:
9838
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Cahill Center for Astronomy and Astrophysics 301-17, California Institute of Technology, Pasadena, California 91125, United States
Department of Astronomy, University of Michigan, 933 Dennison Building, Ann Arbor, Michigan 48109, United States
I. Physicalisches Institut der Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, Netherlands
Max Planck Institut für Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
ISSN:
1089-5639
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Astronomy
Accession Number:
edscal.27894980
Database:
PASCAL Archive

Further Information

The determination of the water ortho-to-para ratio (OPR) is of great interest for studies of the formation and thermal history of water ices in the interstellar medium and protoplanetary disk environments. We present new Herschel observations of the fundamental rotational transitions of ortho-and para-water on the sightline toward Sagittarius B2(N), which allow improved estimates of the measurement uncertainties due to instrumental effects and assumptions about the excitation of water molecules. These new measurements, suggesting a spin temperature of 24―32 K, confirm the earlier findings of an OPR below the high-temperature value on the nearby sightline toward Sagittarius B2(M). The exact implications of the low OPR in the galactic center molecular gas remain unclear and will greatly benefit from future laboratory measurements involving water freeze-out and evaporation processes under low-temperature conditions, similar to those present in the galactic interstellar medium. Given the specific conditions in the central region of the Milky Way, akin to those encountered in active Galactic nuclei, gas-phase processes under the influence of strong X-ray and cosmic ray ionization also have to be carefully considered. We summarize some of the latest laboratory measurements and their implications here.