Treffer: Lung cancer classification using neural networks for CT images

Title:
Lung cancer classification using neural networks for CT images
Source:
Computer methods and programs in biomedicine (Print). 113(1):202-209
Publisher Information:
Kidlington: Elsevier, 2014.
Publication Year:
2014
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Subject Terms:
Biomedical engineering, Génie biomédical, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Generalites, General, Instruments, appareillage, composants et techniques communs à plusieurs branches de la physique et de l'astronomie, Instruments, apparatus, components and techniques common to several branches of physics and astronomy, Instrumentation et techniques x et γ, X- and γ-ray instruments and techniques, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Sciences biologiques et medicales, Biological and medical sciences, Sciences medicales, Medical sciences, Tumeurs, Tumors, Tumeurs animales. Tumeurs expérimentales, Animal tumors. Experimental tumors, Tumeurs expérimentales de l'appareil respiratoire, Experimental respiratory system tumors, Techniques d'exploration et de diagnostic (generalites), Investigative techniques, diagnostic techniques (general aspects), Exploration radioisotopique, Radionuclide investigations, Appareil respiratoire, Respiratory system, Cancer, Cáncer, Algorithme rétropropagation, Backpropagation algorithm, Algoritmo retropropagación, Appareil respiratoire, Respiratory system, Aparato respiratorio, Asymétrie, Asymmetry, Asimetría, Boucle anticipation, Feedforward, Ciclo anticipación, Cancer du poumon, Lung cancer, Cáncer del pulmón, Cancérologie, Cancerology, Cancerología, Classification, Clasificación, Ecart type, Standard deviation, Desviación típica, Moment statistique, Statistical moment, Momento estadístico, Paramètre statistique, Statistical parameter, Parámetro estadístico, Poumon, Lung, Pulmón, Radiographie RX, X ray radiography, Radiografía RX, Réseau neuronal, Neural network, Red neuronal, Rétropropagation, Backpropagation, Retropropagacíon, Survie, Survival, Sobrevivencia, Tumeur maligne, Malignant tumor, Tumor maligno, Réseau neuronal non bouclé, Feedforward neural nets, Red neural unidireccional, Tomographie numérique, Computerized tomography, Tomografía digital, Computed tomography, Kurtosis, Skewness
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
ECE Department, PSG College of Technology, Coimbatore 641004, India
ISSN:
0169-2607
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Metrology

Scanning and diagnostic techniques (generalities)

Tumours
Accession Number:
edscal.28067496
Database:
PASCAL Archive

Weitere Informationen

Early detection of cancer is the most promising way to enhance a patient's chance for survival. This paper presents a computer aided classification method in computed tomography (CT) images of lungs developed using artificial neural network. The entire lung is segmented from the CT images and the parameters are calculated from the segmented image. The statistical parameters like mean, standard deviation, skewness, kurtosis, fifth central moment and sixth central moment are used for classification. The classification process is done by feed forward and feed forward back propagation neural networks. Compared to feed forward networks the feed forward back propagation network gives better classification. The parameter skewness gives the maximum classification accuracy. Among the already available thirteen training functions of back propagation neural network, the Traingdx function gives the maximum classification accuracy of 91.1%. Two new training functions are proposed in this paper. The results show that the proposed training function 1 gives an accuracy of 93.3%, specificity of 100% and sensitivity of 91.4% and a mean square error of 0.998. The proposed training function 2 gives a classification accuracy of 93.3% and minimum mean square error of 0.0942.