Treffer: Joint Albedo Estimation and Pose Tracking from Video

Title:
Joint Albedo Estimation and Pose Tracking from Video
Source:
IEEE transactions on pattern analysis and machine intelligence. 35(7):1674-1689
Publisher Information:
Los Alamitos, CA: IEEE Computer Society, 2013.
Publication Year:
2013
Physical Description:
print, 51 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Albédo, Albedo, Analyse statistique, Statistical analysis, Análisis estadístico, Eclairement, Illumination, Alumbrado, Espace vectoriel, Vector space, Espacio vectorial, Estimation mouvement, Motion estimation, Estimación movimiento, Filtre Kalman, Kalman filter, Filtro Kalman, Filtre particule, Particle filter, Filtro partículas, Harmonique sphérique, Spherical harmonic, Armónica esférica, Loi a posteriori, Posterior distribution, Ley a posteriori, Luminance, Luminancia, Mise à jour, Updating, Actualización, Méthode projection, Projection method, Método proyección, Méthode séquentielle, Sequential method, Método secuencial, Ombre, Shadow, Sombra, Pistage, Tracking, Rastreo, Posture, Postura, Propriété surface, Surface properties, Propiedad superficie, Reconnaissance forme, Pattern recognition, Reconocimiento patrón, Signal vidéo, Video signal, Señal video, Séquence image, Image sequence, Secuencia imagen, Traitement image, Image processing, Procesamiento imagen, Vision ordinateur, Computer vision, Visión ordenador, Echantillonnage préférentiel, Importance sampling, Muestreo por importancia, Image intrinsèque, Intrinsic image, Imagen intrínseca, Reconnaissance objet, Object recognition, Reconocimiento de objetos, Reconnaissance visage, Face recognition, Reconocimiento de cara, Rao-Blackwellized particle filter, intrinsic image statistics, pose tracking, sequential algorithm, spherical harmonics
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Electrical and Computer Engineering, University of Maryland, 1103 A. V. Williams, College Park, MD 20742, United States
Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
Department of Electrical and Computer Engineering, Center for Automation Research, University of Maryland, 4411 A.V. Williams, College Park, MD 20742, United States
ISSN:
0162-8828
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28074196
Database:
PASCAL Archive

Weitere Informationen

The albedo of a Lambertian object is a surface property that contributes to an object's appearance under changing illumination. As a signature independent of illumination, the albedo is useful for object recognition. Single image-based albedo estimation algorithms suffer due to shadows and non-Lambertian effects of the image. In this paper, we propose a sequential algorithm to estimate the albedo from a sequence of images of a known 3D object in varying poses and illumination conditions. We first show that by knowing/estimating the pose of the object at each frame of a sequence, the object's albedo can be efficiently estimated using a Kalman filter. We then extend this for the case of unknown pose by simultaneously tracking the pose as well as updating the albedo through a Rao-Blackwellized particle filter (RBPF). More specifically, the albedo is marginalized from the posterior distribution and estimated analytically using the Kalman filter, while the pose parameters are estimated using importance sampling and by minimizing the projection error of the face onto its spherical harmonic subspace, which results in an illumination-insensitive pose tracking algorithm. Illustrations and experiments are provided to validate the effectiveness of the approach using various synthetic and real sequences followed by applications to unconstrained, video-based face recognition.